Optimization of Growing Media to Support Microgreens Growth and Nutritional Profile

I Made Sukewijaya, Rindang Dwiyani, Putu Oki Bimantara

Abstract

Microgreens are young seedlings of edible vegetables, herbs, and flowers. Growing media plays a vital role in plant growth and the biosynthesis of multiple metabolites that improve the nutritional profile of microgreen. This study evaluated the effect of growing media from a combination of soil, husk charcoal, and perlite with a specific ratio of 1:1:1 (TAP 111), 2:1:1 (TAP 211), 1:2:1 (TAP 121), and 1:1:2 (TAP 112) on the nutrition profile and fresh weight of several microgreen plants, including water spinach, red spinach, green mustard, red lettuce, green spinach, and bok choy. The nutrient contents of nitrogen, phosphorus, and potassium in the growing media were quantified in this study. The data analysis was performed using Duncan’s multiple range test to assess the quantity of vitamin A, vitamin C, antioxidant capacity, and fresh weight at a 5% confidence level. The results showed that TAP121 media exhibited moderate levels of nitrogen (0.23%), very high phosphorus (238.68 ppm), and high potassium (324.69 ppm. The highest vitamin A was found in red spinach in TAP111 (27.77 mg 100 g-1) and TAP112 (22.72 mg 100 g-1) media. The highest vitamin C was found in green mustard in TAP111 media (66.44 mg 100 g-1) and in bok choy in TAP112 media (61.25 mg 100 g-1). The highest antioxidant capacity was found in Bok choy in TAP121 media (386.4 mg AAEAC 1000 g-1) and the highest fresh weight was found in water spinach in  TAP121 media (4.03 g). In conclusion, TAP121 media can be recommended to support the balanced growth and nutritional quality of microgreen plants, especially bok choy, and water spinach. This study provides insights into how specific combinations of growing media can enhance the growth and nutritional content of microgreens. Future studies could focus on optimizing nutrient levels and environmental conditions to maximize the antioxidant properties and other bioactive compounds in microgreens.

Keywords

antioxidant; husk charcoal; perlite; soil; vitamin

Full Text:

PDF

References

Amitrano, C., Paglialunga, G., Battistelli, A., De Micco, V., Del Bianco, M., Liuzzi, G., Moscatello, S., Paradiso, R., Proietti, S., Rouphael, Y., & De Pascale, S. (2023). Defining growth requirements of microgreens in space cultivation via biomass production, morpho-anatomical and nutritional traits analysis. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1190945

Arbačauskas, J., Vaišvila, Z. J., Staugaitis, G., Žičkienė, L., Masevičienė, A., & Šumskis, D. (2023). The Influence of Mineral NPK Fertiliser Rates on Potassium Dynamics in Soil: Data from a Long-Term Agricultural Plant Fertilisation Experiment. Plants, 12(21). https://doi.org/10.3390/plants12213700

Balai Pengujian Standar Instrumen Tanah dan Pupuk. (2023). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. In Petunjuk Teknis Edisi (3rd ed., Vol. 3). https://tanahpupuk.bsip.pertanian.go.id

Balázs, L., Kovács, G. P., Gyuricza, C., Piroska, P., Tarnawa, Á., & Kende, Z. (2023). Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments. Horticulturae, 9(11). https://doi.org/10.3390/horticulturae9111187

Bayineni, V. K., & Herur N, K. (2022). Natural Synedrella Residues as a Growing Substrate Ingredient: An Eco-friendly Way to Improve Yield and Quality of Beet (Beta vulgaris) Microgreens. European Journal of Agriculture and Food Sciences, 4(6), 1–5. https://doi.org/10.24018/ejfood.2022.4.6.593

Bellamkonda, S. (2022). Investigation of R-Leaf Technology as a New Source of Nitrogen Fertiliser for Crop Yield and Productivity-A Field Trial. Modern Concepts & Developments in Agronomy, 11(4). https://doi.org/10.31031/mcda.2022.11.000770

Bhaswant, M., Shanmugam, D. K., Miyazawa, T., Abe, C., & Miyazawa, T. (2023). Microgreens—A Comprehensive Review of Bioactive Molecules and Health Benefits. In Molecules (Vol. 28, Issue 2). MDPI. https://doi.org/10.3390/molecules28020867

Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0

Bremner, J. M. (1979). This Week’s Citation Classic.

Bulgari, R., Negri, M., Santoro, P., & Ferrante, A. (2021). Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates. Horticulturae, 7(5), 96. https://doi.org/10.3390/horticulturae7050096

Chang, J., Wang, M., Jian, Y., Zhang, F., Zhu, J., Wang, Q., & Sun, B. (2019). Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-56671-w

Charloq, C. (2024). Analysis of Bioactive Components of Pakcoy Microgreens (Brassica rapa L.) on Variations of Planting Media. Jurnal Agronomi Tanaman Tropika (JUATIKA), 6(2). https://doi.org/10.36378/juatika.v6i2.3607

Di Gioia, F., De Bellis, P., Mininni, C., Santamaria, P., & Serio, F. (2017). Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture, 97(4), 1212–1219. https://doi.org/10.1002/jsfa.7852

D’Imperio, M., Montesano, F. F., Montemurro, N., & Parente, A. (2021). Posidonia Natural Residues as Growing Substrate Component: An Ecofriendly Method to Improve Nutritional Profile of Brassica Microgreens. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.580596

Fernandes, L. H. M., Silveira, H. R. de O., Souza, K. R. D. de, Resende, M. L. V. de, & Alves, J. D. (2014). Inductors of Resistance and Their Role in Photosynthesis and Antioxidant System Activity of Coffee Seedlings. American Journal of Plant Sciences, 05(25), 3710–3716. https://doi.org/10.4236/ajps.2014.525387

Gaj, R. (2012). The Effect of Different Phosphorus and Potassium Fertilization on Plant Nutrition in Critical Stage and Yield of Winter Triticale. Journal of Central European Agriculture, 13(4), 704–716. https://doi.org/10.5513/JCEA01/13.4.1116

Gan, R.-Y., Kuang, L., Xu, X.-R., Zhang, Y., Xia, E.-Q., Song, F.-L., & Li, H.-B. (2010). Screening of Natural Antioxidants from Traditional Chinese Medicinal Plants Associated with Treatment of Rheumatic Disease. Molecules, 15(9), 5988–5997. https://doi.org/10.3390/molecules15095988

Han, X., Zhou, Y., Li, Y., Ren, W., Liu, K., Zhang, W., Zhang, H., & Tang, M. (2023). LbKAT3 may assist in mycorrhizal potassium uptake, and overexpression of LbKAT3 may promote potassium, phosphorus, and water transport from arbuscular mycorrhizal fungi to the host plant. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1161220

Jansen, C., Zhang, Y., Liu, H., Gonzalez-Portilla, P. J., Lauter, N., Kumar, B., Trucillo-Silva, I., Martin, J. P. S., Lee, M., Simcox, K., Schussler, J., Dhugga, K., & Lübberstedt, T. (2015). Genetic and agronomic assessment of cob traits in corn under low and normal nitrogen management conditions. Theoretical and Applied Genetics, 128(7), 1231–1242. https://doi.org/10.1007/s00122-015-2486-0

Jędrszczyk, E. (2010). Effect of Potassium Foliar Nutrition on Changes in the Content of Carotenoid Pigments and on Some Parameters of the Nutritional Value of Tomato Fruit. Journal of Fruit and Ornamental Plant Research, 72(1), 105–114. https://doi.org/10.2478/v10032-010-0010-2

Johnson, S. A., Prenni, J. E., Heuberger, A. L., Isweiri, H., Chaparro, J. M., Newman, S. E., Uchanski, M. E., Omerigic, H. M., Michell, K. A., Bunning, M., Foster, M. T., Thompson, H. J., & Weir, T. L. (2021). Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Current Developments in Nutrition, 5(2), nzaa180. https://doi.org/10.1093/cdn/nzaa180

Klute A. (1965). Methods of Soil Analysis (C. A. Black, Ed.). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1

Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, Sodium, and Potassium (pp. 225–246). https://doi.org/10.2134/agronmonogr9.2.2ed.c13

Li, T., Lalk, G. T., Arthur, J. D., Johnson, M. H., & Bi, G. (2021). Shoot production and mineral nutrients of five microgreens as affected by hydroponic substrate type and post-emergent fertilization. Horticulturae, 7(6). https://doi.org/10.3390/horticulturae7060129

Li, T., Lalk, G. T., & Bi, G. (2021). Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae, 7(2), 1–16. https://doi.org/10.3390/horticulturae7020014

Liu, X., Yin, C., Xiang, L., Jiang, W., Xu, S., & Mao, Z. (2020). Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02662-3

Manaroinsong, E., Bintoro, M. H., Sudradjat, S., & Asmono, D. (2014). Effect of Nitrogen Phosphorus and Potassium Fertilization on Sago Growth. Kastamonu University Journal of Forestry Faculty, 14(1), 146. https://doi.org/10.17475/kuofd.50851

Mariam Paul, N., & Harikumar, V. S. (2021). Effects of biochar on soil microbial community composition using PLFA profiling- A review. 7th GoGreen Summit 2021, 24–25. https://doi.org/10.36647/978-93-92106-02-6.5

Muftiyatunnisa, S., Darsono, D., & Anantanyu, S. (2023). The Impact Of Social Media On Microgreens Product Knowledge And Purchase Intention. SEISENSE Journal of Management, 6(1), 6–18. https://doi.org/10.33215/sjom.v6i1.834

Murphy, J., & Riley, J. P. (1958). A Single-Solution Method For The Determination Of Soluble Phosphate In Sea Water. In J. mar. biol. Ass. U.K (Vol. 37).

Poudel, P., Duenas, A. E. K., & Di Gioia, F. (2023). Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1229157

Puccinelli, M., Malorgio, F., Rosellini, I., & Pezzarossa, B. (2019). Production of selenium‐biofortified microgreens from selenium‐enriched seeds of basil. Journal of the Science of Food and Agriculture, 99(12), 5601–5605. https://doi.org/10.1002/jsfa.9826

Renna, M., & Paradiso, V. M. (2020). Ongoing research on microgreens: Nutritional properties, shelf-life, sustainable production, innovative growing and processing approaches. In Foods (Vol. 9, Issue 6). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods9060826

Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science and Technology, 44(2), 827–833. https://doi.org/10.1021/es902266r

Saleh, R., Gunupuru, L. R., Lada, R., Nams, V., Thomas, R. H., & Abbey, Lord. (2022). Growth and Biochemical Composition of Microgreens Grown in Different Formulated Soilless Media. Plants, 11(24). https://doi.org/10.3390/plants11243546

Septirosya, T., Septiana, D., Oktari, R. D., Solfan, B., & Aryanti, E. (2024). Sulforaphane content enhancement of red cabbage microgreens by using different planting media and nutrition solution. IOP Conference Series: Earth and Environmental Science, 1302(1). https://doi.org/10.1088/1755-1315/1302/1/012016

Sérino, S., Costagliola, G., & Gomez, L. (2019). Lyophilized tomato plant material: Validation of a reliable extraction method for the analysis of vitamin C. Journal of Food Composition and Analysis, 81, 37–45. https://doi.org/10.1016/j.jfca.2019.05.001

Sharma, A., Hazarika, M., Heisnam, P., Pandey, H., Devadas, V. S., Wangsu, M., & Kartha, B. D. (2023). Factors Affecting Production, Nutrient Translocation Mechanisms, and LED Emitted Light in Growth of Microgreen Plants in Soilless Culture. ACS Agricultural Science & Technology, 3(9), 701–719. https://doi.org/10.1021/acsagscitech.3c00260

Singh, G. K., Yadav, D. D., Siddiqui, M. Z., Kumar, J., Singh, V., Prajapati, S. K., Lal, C., Singh, A., & Verma, S. (2022). Effect of FYM, Phosphorus and PSB on Growth, Yield Attributes, Yield and Economics of Kharif Green Gram (Vigna radiata (L.) Wilczek). International Journal of Environment and Climate Change, 1362–1370. https://doi.org/10.9734/ijecc/2022/v12i121575

Štajner, D., Popović, B. M., Ćalić-Dragosavac, D., Malenčić, D., & Zdravković-Korać, S. (2011). Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status. Phytotherapy Research, 25(11), 1618–1622. https://doi.org/10.1002/ptr.3394

Stevens, R., Buret, M., Garchery, C., Carretero, Y., & Causse, M. (2006). Technique for Rapid, Small-Scale Analysis of Vitamin C Levels in Fruit and Application to a Tomato Mutant Collection. Journal of Agricultural and Food Chemistry, 54(17), 6159–6165. https://doi.org/10.1021/jf061241e

Tallei, T. E., Kepel, B. J., Wungouw, H. I. S., Nurkolis, F., Adam, A. A., & Fatimawali. (2024). A comprehensive review on the antioxidant activities and health benefits of microgreens: current insights and future perspectives. International Journal of Food Science & Technology, 59(1), 58–71. https://doi.org/10.1111/ijfs.16805

Weber, C. F. (2017). Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems. Frontiers in Nutrition, 4. https://doi.org/10.3389/fnut.2017.00007

Wu, J., Chen, S., Ruan, Y., & Gao, W. (2023). Combinatorial Effects of Glycine and Inorganic Nitrogen on Root Growth and Nitrogen Nutrition in Maize (Zea mays L.). Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914122

Yang, C., Huang, C., Gou, L., Yang, H., & Liu, G. (2023). Functional Identification and Genetic Transformation of the Ammonium Transporter PtrAMT1;6 in Populus. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108511

Refbacks

  • There are currently no refbacks.