Changes in Chemical Profile and Bioactive Potential of Cascara Water Kefir Probiotic Beverage During Fermentation
Abstract
The global demand for functional food products is on the rise, with probiotic beverages, including water kefir and kombucha, emerging as the preferred options among consumers. Water kefir is produced through the fermentation of sugar-based solutions by water kefir grains and contains an extensive variety of probiotic microorganisms. Cascara, also known as coffee skin, has been recognized as a viable raw material for functional beverages that possess high antioxidant content. Nonetheless, a comprehensive understanding of the alterations in chemical compounds within cascara during the fermentation process remains insufficient, especially regarding the development of water kefir probiotic beverages. This study aims to identify changes in chemical profiles that occur during fermentation of cascara-based water kefir. The research was conducted using a completely randomized design (CRD) method with fermentation times of 0, 24, 48, and 72 hours. The results showed significant increases in total acidity, with lactic acid rising from 2.25% to 8.10% and acetic acid from 1.50% to 5.40%, which correlated with a decrease in pH. Total phenolic content increased from 366.70 mg/L to 514.91 mg/L, while flavonoid content decreased from 703.12 mg/L to 265.62 mg/L. Additionally, tannin and caffeine contents increased significantly during fermentation, on the other hand the sugar content decreased over time. These findings suggest that fermentation enhances the bioactive potential of cascara-based water kefir, improving its antioxidant capacity while altering its flavor and chemical composition. This research contributes to the understanding of cascara's potential for probiotic beverages, providing valuable insights for the development of functional beverages. The suggestion for further research is the need to identify the bioactive effect of cascara water kefir beverages products on health benefit.
Keywords
Full Text:
PDFReferences
AOAC International. (2016). Official methods of analysis of AOAC International. Association of Official Analysis Chemists International.
Araújo, C. da S., Macedo, L. L., & Teixeira, L. J. Q. (2023). Use of mid-infrared spectroscopy to predict the content of bioactive compounds of a new non-dairy beverage fermented with water kefir. LWT, 176. https://doi.org/10.1016/j.lwt.2023.114514
Dartora, B., Hickert, L. R., Fabricio, M. F., Ayub, M. A. Z., Furlan, J. M., Wagner, R., Perez, K. J., & Sant’Anna, V. (2023). Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Research International, 174. https://doi.org/10.1016/j.foodres.2023.113569
DePaula, J., Cunha, S. C., Cruz, A., Sales, A. L., Revi, I., Fernandes, J., Ferreira, I. M. P. L. V. O., Miguel, M. A. L., & Farah, A. (2022). Volatile Fingerprinting and Sensory Profiles of Coffee Cascara Teas Produced in Latin American Countries. Foods, 11(19). https://doi.org/10.3390/foods11193144
Destro, T. M., Prates, D. da F., Watanabe, L. S., Garcia, S., Biz, G., & Spinosa, W. A. (2019). Organic brown sugar and jaboticaba pulp influence on water kefir fermentation. Ciencia e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943005619
Egea, M. B., Santos, D. C. dos, Oliveira Filho, J. G. de, Ores, J. da C., Takeuchi, K. P., & Lemes, A. C. (2022). A review of nondairy kefir products: their characteristics and potential human health benefits. Critical Reviews in Food Science and Nutrition, 62(6), 1536–1552. https://doi.org/10.1080/10408398.2020.1844140
Firdaus, G. M., & Rizqiati, H. (2019). Pengaruh Lama Fermentasi Terhadap Rendemen, pH, Total Padatan Terlarut dan Mutu Hedonik Kefir Whey. Jurnal Teknologi Pangan, 3(1), 70–79. https://doi.org/10.14710/jtp.2019.22284
Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3(1), 1–6. https://doi.org/10.1186/s40538-016-0077-1
Gomes, R. J., de Fatima Borges, M., de Freitas Rosa, M., Castro-Gómez, R. J. H., & Spinosa, W. A. (2018). Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technology and Biotechnology, 56(2), 139. https://doi.org/10.17113/ftb.56.02.18.5593
Gülhan, A. (2024). Use of ice teas formulated with black teas prepared with different infusion methods and grape juice in the production of water kefir beverages. Food and Humanity, 2. https://doi.org/10.1016/j.foohum.2023.100219
Hlahla, L. N., Mudau, F. N., & Mariga, I. K. (2010). Effect of fermentation temperature and time on the chemical composition of bush tea (Athrixia phylicoides DC.). Journal of Medicinal Plants Research, 4(9), 824–829. https://doi.org/10.5897/JMPR10.118
Kato, M., Kanehara, T., Shimizu, H., Suzuki, T., Gillies, F. M., Crozier, A., & Ashihara, H. (1996). Caffeine biosynthesis in young leaves of Camellia sinensis: In vitro studies on N‐methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiologia Plantarum, 98(3), 629–636. https://doi.org/10.1111/j.1399-3054.1996.tb05720.x
Laureys, D., & De Vuyst, L. (2014). Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Applied and Environmental Microbiology, 80(8), 2564–2572. https://doi.org/10.1128/AEM.03978-13
Leonard, W., Zhang, P., Ying, D., Adhikari, B., & Fang, Z. (2021). Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances, 49, 107763. https://doi.org/10.1016/J.BIOTECHADV.2021.107763
Li, J., Xu, R., Zong, L., Brake, J., Cheng, L., Wu, J., & Wu, X. (2021). Dynamic evolution and correlation between metabolites and microorganisms during manufacturing process and storage of Fu brick tea. Metabolites, 11(10). https://doi.org/10.3390/metabo11100703
Limbad, M., Gutierrez-Maddox, N., Hamid, N., Kantono, K., Liu, T., & Young, T. (2023). Microbial and Chemical Changes during Fermentation of Coconut Water Kefir Beverage. Applied Sciences (Switzerland), 13(12). https://doi.org/10.3390/app13127257
Liu, M., Xie, H., Ma, Y., Li, H., Li, C., Chen, L., Jiang, B., Nian, B., Guo, T., Zhang, Z., Jiao, W., Liu, Q., Ling, T., & Zhao, M. (2020). High Performance Liquid Chromatography and Metabolomics Analysis of Tannase Metabolism of Gallic Acid and Gallates in Tea Leaves. Journal of Agricultural and Food Chemistry, 68(17). https://doi.org/10.1021/acs.jafc.0c00513
Moretti, A. F., Moure, M. C., Quiñoy, F., Esposito, F., Simonelli, N., Medrano, M., & León-Peláez, Á. (2022). Water kefir, a fermented beverage containing probiotic microorganisms: from ancient and artisanal manufacture to industrialized and regulated commercialization. Future Foods, 5, 100123. https://doi.org/10.1016/j.fufo.2022.100123
Mousavi, Z. E., Mousavi, S. M., Razavi, S. H., Emam-Djomeh, Z., & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27(1). https://doi.org/10.1007/s11274-010-0436-1
Nalurita, I., Arzani, L. D. P., & Putri, D. A. (2024). Identifikasi Profil Komponen Volatil dan Sensori Cascara Arabika dan Robusta Asal Nusa Tenggara Barat, Indonesia. Jurnal Agroteknologi, 18(2), 96–111. https://doi.org/10.19184/jagt.v18i2.2582
Nalurita, I., Suwasono, S., Kuswardhani, N., & Isnain, F. S. (2023). KUALITAS PRODUK CASCARA CELUP DENGAN PENAMBAHAN JAHE MERAH (Zingiber officinale var. Rubrum): Product Quality of Cascara Infusion with the Addition of Red Ginger (Zingiber officinale var. Rubrum). Pro Food, 9(1), 1–11. https://doi.org/10.29303/profood.v9i1.300
Nishino, N., Harada, H., & Sakaguchi, E. (2003). Evaluation of fermentation and aerobic stability of wet brewers’ grains ensiled alone or in combination with various feeds as a total mixed ration. Journal of the Science of Food and Agriculture, 83(6), 557–563.
Nugrahani, H. N., Apriyani, I., & Bahri, S. (2021). Analisis Kadar Asam Asetat Hasil Fermentasi Buah Kedondong (Spondias dulcis Parkinson) dengan Metode Titrasi Alkalimetri. Sainstech Farma: Jurnal Ilmu Kefarmasian, 14(2), 97–101. https://doi.org/10.37277/sfj.v14i2.1013
Nurlinda, N., Handayani, V., & Rasyid, F. A. (2021). Spectrophotometric Determination of Total Flavonoid Content in Biancaea Sappan (Caesalpinia sappan L.) Leaves. Jurnal Fitofarmaka Indonesia, 8(3), 1–4. https://doi.org/10.33096/jffi.v8i3.712
Ozcelik, F., Akan, E., & Kinik, O. (2021). Use of Cornelian cherry, hawthorn, red plum, roseship and pomegranate juices in the production of water kefir beverages. Food Bioscience, 42. https://doi.org/10.1016/j.fbio.2021.101219
Pine, A. T. D., Rahman, L., Djide, M. N., & Kadir, S. (2013). Pengaruh Konsentrasi Jamur Dipo Terhadap Hasil Fermentasi Sediaan Kombucha Dengan Substrat Teh Hitam. Jurnal Farmasi UIN Alauddin Makassar, 1(1), 25–32. https://doi.org/10.24252/jfuinam.v1i1.2089
Putri, D. A., Nalurita, I., Heldiyanti, R., & Zulkarnaen, Z. (2024). Optimization of antioxidant activity and characterization of probiotic cascara beverage fermented using water kefir grain [Optimasi aktivitas antioksidan dan karakterisasi minuman probiotik cascara hasil fermentasi menggunakan bibit kefir air]. Jurnal Teknologi & Industri Hasil Pertanian, 29(2), 109–121. https://doi.org/10.23960/jtihp.v29i2.109-121
Ramanda, M. R., Prameswari, A. F., & Ulfa, M. N. (2024). Effect of Variations of Roasting Temperature on the Physicochemical Properties of Robusta Coffee (Coffea canephora L.). Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 13(2), 405–417. https://doi.org/10.23960/jtep-l.v13i2.405-417
Rohman, A., Dwiloka, B., & Rizqiati, H. (2019). Effect of fermentation time on acidity, total lactic acid bacteria, total yeast and hedonic quality green coconut (Cocos nucifera) water kefir. Jurnal Teknologi Pangan, 3(1), 127–133. https://doi.org/10.14710/jtp.2019.23281
Sholichah, E., Desnilasari, D., Subekti, R. J., Karim, M. A., & Purwono, B. (2021). The influence of coffee cherry fermentation on the properties of Cascara arabica from Subang, West Java. IOP Conference Series: Materials Science and Engineering, 1011(1). https://doi.org/10.1088/1757-899X/1011/1/012006
Siggaard-Andersen, O. (2006). ACID–BASE BALANCE. Encyclopedia of Respiratory Medicine: Volume 1-4, 1–4, 5–10. https://doi.org/10.1016/B0-12-370879-6/00003-X
Sin, P. Y., Tan, S. H., Asras, M. F. F., Lee, C. M., & Lee, T. C. (2024). Probiotic Growth Pattern and Physicochemical Evaluation of Water Kefir Fermentation. Malaysian Applied Biology, 53(2), 21–30. https://doi.org/10.55230/mabjournal.v53i2.2742
Somsong, P., Santivarangkna, C., Tiyayon, P., Hsieh, C. M., & Srichamnong, W. (2020). Assessing polyphenol components and antioxidant activity during fermented assam tea ball processing. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145853
Tawali, A. B., Abdullah, N., & Wiranata, D. B. S. (2018). The Influence of Fermentation Using Bacteria Lactic Acid Yoghurt to the Flavor of Coffee Robusta (Coffea robusta). Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 1(1). https://doi.org/10.20956/canrea.v1i1.26
Wang, R., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2022). UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Current Research in Food Science, 5, 471–478. https://doi.org/10.1016/J.CRFS.2022.02.012
Wang, X., Wan, X., Hu, S., & Pan, C. (2008). Study on the increase mechanism of the caffeine content during the fermentation of tea with microorganisms. Food Chemistry, 107(3). https://doi.org/10.1016/j.foodchem.2007.09.023
Refbacks
- There are currently no refbacks.