Assessment of Soil Respiration Under Different Land Use in East Kutai, Indonesia
Abstract
Forest areas are where the most advanced water and air cycles occur and cannot be replaced by any man-made products. For this reason, Indonesians' lives and forest lands are inextricably linked as economic resources. Deforestation also occurs at a considerable rate in East Kutai Regency. Changes in the area of forest land, which is continuously decreasing, followed by a growth in land area for other uses, including mining and plantations, serve as examples of this circumstance. To determine whether the conversion of this area is genuinely balanced between measures to protect the environment and the health of the soil and its economic value, more research must be done. One way to find out is to examine soil respiration in several locations. The purpose of the research was to compare soil respiration levels in three types of land cover in East Kutai Regency. The data collection method involves taking 0 – 30 cm depth of soil sample at three points in three locations, namely Rubber plantation, Teak plantation and Botanical Gardens. The total soil microorganism count is determined by soil organic carbon. The overall number of soil microorganisms increases with soil organic matter. Next, the soil samples are tested in the laboratory for colony total number. The study's findings indicated that the teak plantation had the lowest soil respiration, at21.37±0.9, and the Botanical Garden location had the highest, at29.87±1.91. The high total number of soil microorganisms makes respiration high because it produces high CO2, which is caused by the high activity of the microorganisms in the soil.
Keywords
Full Text:
PDFReferences
Abdullah, U. H., Sufardi, S., Syafruddin, S., & Arabia, T. (2022). Soil organic carbon of grassland and bush forest on dry land in Aceh Besar District, Indonesia. Biodiversitas, 23(5), 2594–2600. https://doi.org/10.13057/biodiv/d230541
Arifan, F., Winarni, S., Wahyuningsih, W., Pudjihastuti, I., & Broto, R. W. (2019). Total Plate Count (TPC) Analysis of Processed Ginger on Tlogowungu Village. 167(ICoMA 2018), 377–379. https://doi.org/10.2991/icoma-18.2019.80
Barranco, S. A., Ortiz, P. S., Kowalski, A. S., & Sánchez-, E. P. (2025). Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove. SOIL, 11(February), 1–30. https://doi.org/https://doi.org/10.5194/soil-11-213-2025
Campbell, T. P., Ulrich, D. E. M., Toyoda, J., Thompson, J., Munsky, B., Albright, M. B. N., Bailey, V. L., Tfaily, M. M., & Dunbar, J. (2022). Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Frontiers in Microbiology, 12(January), 1–12. https://doi.org/10.3389/fmicb.2021.799014
Fekete, I., Berki, I., Lajtha, K., Trumbore, S., Francioso, O., Gioacchini, P., Montecchio, D., Várbíró, G., Béni, Á., Makádi, M., Demeter, I., Madarász, B., Juhos, K., & Kotroczó, Z. (2021). How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? Biogeochemistry, 152(1), 13–32. https://doi.org/10.1007/s10533-020-00728-w
Fu, P., Clanton, C., Demuth, K. M., Goodman, V., Griffith, L., Khim-Young, M., Maddalena, J., Lamarca, K., Wright, L. A., Schurman, D., & Kellner, J. R. (2024). Accurate quantification of full-column soil organic carbon in CONUS using machine learning. Remote Sensing, 16, 2217. https://doi.org/https://doi.org/10.3390/rs16122217
Gondal, A. H., Farooq, Q., Sohail, S., Shasang Kumar, S., Danish Toor, M., Zafar, A., & Rehman, B. (2021). Adaptability of Soil pH through Innovative Microbial Approach. Current Research in Agricultural Sciences, 8(2), 71–79. https://doi.org/10.18488/journal.68.2021.82.71.79
Grima, N., Edwards, D., Edwards, F., Petley, D., & Fisher, B. (2020). Landslides in the Andes: Forests can provide cost-effective landslide regulation services. Science of the Total Environment, 745(July), 18. https://doi.org/10.1016/j.scitotenv.2020.141128
Gunasekera, H. A. D. D. T., & Silva, R. C. L. De. (2020). Study of the Effects of Soil Acidity and Salinity on Aluminium Mobility in Selected Soil Samples in Sri Lanka. Asian Journal of Environment & Ecology, February, 58–67. https://doi.org/10.9734/ajee/2020/v13i430191
Has, D. H., Marpaung, S. S. M., Lubis, D. A., & Marpaung, J. U. (2024). Identification of the Role of Stakeholders in Sustainable City Forests, Case Study of Beringin Medan City Forest, North Sumatra, Indonesia. Agro Bali : Agricultural Journal, 7(2), 410–422. https://doi.org/10.37637/ab.v7i2.1797
Hendrati, R. L. (2019). Environmental and Social Sustainability: The role of Forest as the most influential ecosystem. IOP Conference Series: Earth and Environmental Science, 256(1). https://doi.org/10.1088/1755-1315/256/1/012052
Hidayat, Y., Alfitri, Purnama, D. H., & Riswani. (2021). The Shape of Forest , Social and Economic Conditions of Community Living Around Production Forest with Industrial Plantation Forest Permit ( Case Study : Forest Management Unit of KPH Meranti ) The Shape of Forest , Social and Economic Conditions of Commu. IOP Conference Series: Earth and Environmental Science, 810 012022, 1–7. https://doi.org/10.1088/1755-1315/810/1/012022
Howen, M., Balatif, R., Lubis, N. D. A., Amelia, S., & Yusrani, E. (2022). The Number of Bacteria Colonies in Carp Fish (Cyprinus carpio) After Administration of Lime (Citrus aurantifolia) and Orange Extract (Citrus jambhiri Lush.). Journal of Saintech Transfer, 5(1), 29–33. https://doi.org/10.32734/jst.v5i1.8694
Husen, E., Salma, S., & Agus, F. (2014). Peat emission control by groundwater management and soil amendments: Evidence from laboratory experiments. Mitigation and Adaptation Strategies for Global Change, 19(6), 821–829. https://doi.org/10.1007/s11027-013-9526-3
Irving, D., Bakhshandeh, S., Tran, T. K. A., & McBratney, A. B. (2024). A cost-effective method for quantifying soil respiration. Soil Security, 16(July), 100162. https://doi.org/10.1016/j.soisec.2024.100162
Jatoi, Tahir, M., Lan, G., Wu, Z., Sun, R., Yang, C., & Tan, Z. (2019). Comparison of Soil Microbial Composition and Diversity Between Mixed and Monoculture Rubber Plantations in Hainan Province, China. Tropical Conservation Science, 12, 9. https://doi.org/10.1177/1940082919876072
Jiang, D., Chen, L., Xia, N., Norgbey, E., Koomson, D. A., & Darkwah, W. K. (2020). Elevated atmospheric CO2 impact on carbon and nitrogen transformations and microbial community in replicated wetland. Ecological Processes, 9(1). https://doi.org/https://doi.org/10.1186/s13717-020-00267-0
Jin, L., Hua, K., Zhan, L., He, C., Wang, D., Nagano, H., Cheng, W., Inubushi, K., & Guo, Z. (2024). Effect of Soil Acidification on Temperature Sensitivity of Soil Respiration. Agronomy, 14(5). https://doi.org/10.3390/agronomy14051056
Jufri, R. F. (2020). Journal la lifesci Microbial Isolation. Journal La Lifesci, 01(01), 18–23. https://newinera.com/index.php/JournalLaLifesci/article/view/32/21
Kannan, M. N., Badoni, A., Chamoli, V., Chandra Bahuguna, N., & Sethi, S. (2018). Advances in Agriculture and Natural Sciences for Sustainable Agriculture (October 12 & 13, 2018) Isolation and characterization of bacterial isolates from agriculture field soil of Roorkee region. ~ 108 ~ Journal of Pharmacognosy and Phytochemistry, 5(2013), 108–110. www.statlab.iastate.edu/survey/SQI/
Khaidem, J., & Thounaojam, T. (2018). Influence of soil pH on nutrient availability: A review. Journal of Emerging Technologies and Innovative Research, 5(August), 707. https://www.researchgate.net/publication/343555930
Kotroczó, Z., Makádi, M., Kocsis, T., Béni, Á., Várbíró, G., & Fekete, I. (2023). Long-Term Changes in Organic Matter Content and Soil Moisture Determine the Degree of Root and Soil Respiration. Plants, 12(2), 1–13. https://doi.org/10.3390/plants12020251
Li, Y., Wang, Y., Wang, Y., & Wang, B. (2019). Effects of simulated acid rain on soil respiration and its component in a mixed coniferous-broadleaved forest of the three gorges reservoir area in Southwest China. Forest Ecosystems, 6(1). https://doi.org/10.1186/s40663-019-0192-0
Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., & De Yoreo, J. J. (2017). Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00407-9
Qu, R., Liu, G., Yue, M., Wang, G., Peng, C., Wang, K., & Gao, X. (2023). Soil temperature, microbial biomass and enzyme activity are the critical factors affecting soil respiration in different soil layers in Ziwuling Mountains, China. Frontiers in Microbiology, 14(February), 1–12. https://doi.org/10.3389/fmicb.2023.1105723
Rahardjo, H., Harnas, F. R., Leong, E. C., Tan, P. Y., Fong, Y. K., & Sim, E. K. (2009). Tree stability in an improved soil to withstand wind loading. Urban Forestry and Urban Greening, 8(4), 237–247. https://doi.org/10.1016/j.ufug.2009.07.001
Rodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., Brockelman, W. Y., & Tor-ngern, P. (2021). Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecology and Evolution, 11(21), 15430–15443. https://doi.org/10.1002/ece3.8248
Saputra, D. D., Rakhim Putrantyo, A., & Kusuma, Z. (2018). Hubungan Kandungan Bahan Organik Tanah dengan Bulk Density, Porositas, dan Laju Infiltrasi Pada Perkebunan Salak Kecamatan Purwosari Kabupaten Pasuruan. Jurnal Tanah Dan Sumberdaya Lahan, 5(1), 2549–9793. http://jtsl.ub.ac.id
Shah, N. W., Baillie, B. R., Bishop, K., Ferraz, S., Högbom, L., & Nettles, J. (2022). The effects of forest management on water quality. Forest Ecology and Management, 522(February), 1–23. https://doi.org/10.1016/j.foreco.2022.120397
Solekhah, B. A., Priyadarshini, R., & Maroeto, M. (2024). Kajian Pola Distribusi Tekstur terhadap Bahan Organik pada Berbagai Penggunaan Lahan. Agro Bali : Agricultural Journal, 7(1), 256–265. https://doi.org/10.37637/ab.v7i1.1571
Springgay, E., Mcnulty, S. G., Dannunzio, R., & Steel, E. A. (2021). A guide to forest–water management. In A guide to forest–water management (Issue August). Publisher: FAO, IUFRO and USDA. https://doi.org/10.4060/cb6473en
Swaminathan, C., Devi, N., & Pandian, K. (2021). Latest Trends in Soil Science (Volume - 1). In Latest Trends in Soil Science (Volume - 1) (Issue January). Integrated Publications. https://doi.org/10.22271/int.book.33
Tong, D., Li, Z., Xiao, H., Nie, X., Liu, C., & Zhou, M. (2021). How do soil microbes exert impact on soil respiration and its temperature sensitivity? Environmental Microbiology, 23(6), 3048–3058. https://doi.org/10.1111/1462-2920.15520
Uchida, R., & Nguyen Hue. (2020). Soil Acidity and Liming. In J. A. Silva & R. S. Uchida (Eds.), Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture Plant Nutrient Management in Hawai (Issue February 2000, pp. 1–380). College of Tropical Agriculture and Human Resources (CTAHR). https://doi.org/10.2134/agronmonogr12.2ed
Vikram, K., Chaudhary, H., Notup, T., J, D., & Rao, K. S. (2022). Soil Respiration Under Different Land Use Systems in the Kumaon Region of Central Himalaya, India. International Journal of Ecology and Environmental Sciences, 48(5). https://doi.org/10.55863/ijees.2022.0649
Vincze, É. B., Becze, A., Laslo, É., & Mara, G. (2024). Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility. Agriculture (Switzerland), 14(1), 1–23. https://doi.org/10.3390/agriculture14010152
Wang, C. yu, Zhou, X., Guo, D., Zhao, J. hua, Yan, L., Feng, G. zhong, Gao, Q., Yu, H., & Zhao, L. po. (2019). Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Annals of Microbiology, 69(13), 1461–1473. https://doi.org/10.1007/s13213-019-01529-9
Wegscheider, S., Purwanto, J., Margono, B. A., Nugroho, S., Budiharto, Buchholz, G., & Sugardiman, R. A. (2019). Current achievements to reduce deforestation in Kalimantan. Indonesian Journal of Geography, 50(2), 109–120. https://doi.org/10.22146/ijg.23680
Widati, sri. (2007). Soil Biological Analysis Methods (Rasti Saraswati, E. Husen, & R. D. M. Simanungkalit (eds.)). Balai Besar Penelitian dan Pengembangan Sumber Daya Lahan Pertanian. https://repository.pertanian.go.id/server/api/core/bitstreams/63eecc44-8bb1-4b39-b71f-d24523bf0635/content
Witno, W., Maria, M., Liana, L., & Wardi, W. (2024). Assessing Carbon Dioxide (CO2) Absorption Potential of Forests Around Landslides Along the Trans Palopo-Toraja Highways. Jurnal Ilmu Kehutanan, 18(1), 59–70. https://doi.org/10.22146/jik.v18i1.9782
Xiao, W., Ge, X., Zeng, L., Huang, Z., Lei, J., Zhou, B., & Li, M. (2014). Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China. PLoS ONE, 9(7), 1–11. https://doi.org/10.1371/journal.pone.0101890
Yusnaini, S., Niswati, A., Aini, S. N., Arif, M. A. S., Dewi, R. P., & Rivaie, A. A. (2021). Changes in soil respiration after application of in situ soil amendment and phosphate fertilizer under soybean cultivation at Ultisol South Lampung, Indonesia. IOP Conference Series: Earth and Environmental Science, 724(1). https://doi.org/10.1088/1755-1315/724/1/012002
Refbacks
- There are currently no refbacks.