Salinity Stress and Exogenous Ascorbic Acid: Impact on Soybean Physiological Attributes and Biomass Accumulation
Abstract
Salinity, prevalent abiotic stress, has substantially restricted soybean production worldwide. This intricate environmental factor disrupts various physiological and biochemistry processes in soybean plants and ultimately diminishes yields. This experiment was conducted to report the damaging effect of sodium chloride (NaCl) given to the soil through watering at different levels (0, 50, and 100 mM NaCl) and to explore the impact of foliar spraying ascorbic acid to reduce the adverse effects of salinity at different levels (0, 400, 600, and 800 ppm). This study showed that the impact of salinity level significantly reduced gas exchange parameters, number of stomata, content of AsA, shoot dry weight, and root dry weight. The salinity also caused an increase in electrolyte leakage. Foliar application of ascorbic acid alleviated salinity-induced plant stress by increasing the number of stomata and root dry weight.
Keywords
Full Text:
PDFReferences
Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8(613), 1-17. https://doi.org/10.3389/fpls.2017.00613
Alayafi, A. A. M. (2020). Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism. Environmental Science and Pollution Research, 27(16), 19186–19199. https://doi.org/10.1007/s11356-019-06195-7
Billah, M., M. R., N., H., & M., S. U. (2017). Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. African Journal of Agricultural Research, 12(17), 1437–1446. https://doi.org/10.5897/AJAR2017.12295
Bouzroud, S., Henkrar, F., Fahr, M., & Smouni, A. (2023). Salt stress responses and alleviation strategies in legumes: A review of the current knowledge. 3 Biotech, 13(8), 287. https://doi.org/10.1007/s13205-023-03643-7
Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture, 11(10), 1610–1620. https://doi.org/10.1016/S2095-3119(12)60164-6
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010
Dewi, E. S., Abdulai, I., Bracho-Mujica, G., Appiah, M., & Rötter, R. P. (2023). Agronomic and physiological traits response of three tropical sorghum (Sorghum bicolor L.) cultivars to drought and salinity. Agronomy, 13(11), 2788. https://doi.org/10.3390/agronomy13112788
Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1–9. https://doi.org/10.1016/S0168-9452(98)00025-9
El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S., Sytar, O., Çiğ, F., Meena, R. S., & Erman, M. (2020). Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. In S. Fahad, M. Hasanuzzaman, M. Alam, H. Ullah, M. Saeed, I. Ali Khan, & M. Adnan (Eds.), Environment, Climate, Plant and Vegetation Growth (pp. 503–533). Springer International Publishing. https://doi.org/10.1007/978-3-030-49732-3_20
El-Hawary, M. M., Hashem, O. S. M., & Hasanuzzaman, M. (2023). Seed priming and foliar application with ascorbic acid and salicylic acid mitigate salt stress in wheat. Agronomy, 13(2), 493. https://doi.org/10.3390/agronomy13020493
Ghorbanli, M., Ebrahimzadeh, H., & Sharifi, M. (2004). Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biologia Plantarum, 48(4), 575–581. https://doi.org/10.1023/B:BIOP.0000047157.49910.69
Hasanuzzaman, M., Raihan, Md. R. H., Alharby, H. F., Al-Zahrani, H. S., Alsamadany, H., Alghamdi, K. M., Ahmed, N., & Nahar, K. (2023). Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and glyoxalase system. Agronomy, 13(2), 361. https://doi.org/10.3390/agronomy13020361
Hassan, A., Fasiha Amjad, S., Hamzah Saleem, M., Yasmin, H., Imran, M., Riaz, M., Ali, Q., Ahmad Joyia, F., Mobeen, Ahmed, S., Ali, S., Abdullah Alsahli, A., & Nasser Alyemeni, M. (2021). Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences, 28(8), 4276–4290. https://doi.org/10.1016/j.sjbs.2021.03.045
Huanhe, W., Xiaoyu, G., Xiang, Z., Wang, Z., Xubin, Z., Yinglong, C., Zhongyang, H., Guisheng, Z., Tianyao, M., & Qigen, D. (2024). Grain yield, biomass accumulation, and leaf photosynthetic characteristics of rice under combined salinity-drought stress. Rice Science, 31(1), 118–128. https://doi.org/10.1016/j.rsci.2023.06.006
Kanwal, R., Maqsood, M. F., Shahbaz, M., Naz, N., Zulfiqar, U., Ali, M. F., Jamil, M., Khalid, F., Ali, Q., Sabir, M. A., Chaudhary, T., Ali, H. M., & Alsakkaf, W. A. A. (2024). Exogenous ascorbic acid as a potent regulator of antioxidants, osmo-protectants, and lipid peroxidation in pea under salt stress. BMC Plant Biology, 24(1), 247. https://doi.org/10.1186/s12870-024-04947-3
Karolinoerita, V., & Yusuf, W. A. (2020). Salinisasi lahan dan permasalahannya di indonesia. Jurnal Sumberdaya Lahan, 14(2), 91. https://doi.org/10.21082/jsdl.v14n2.2020.91-99
Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 42(7), 118. https://doi.org/10.1007/s11738-020-03106-z
Krismiratsih, F., Winarso, S., & Slamerto. (2020). NaCl Salt Stress and Azolla Application Techniques in Rice Plants. Jurnal Ilmu Pertanian Indonesia (JIPI), 25(3), 349–355. https://doi.org/10.18343/jipi.25.3.349
Le, L. T. T., Kotula, L., Siddique, K. H. M., & Colmer, T. D. (2021). Na+ and/or Cl− toxicities determine salt sensitivity in soybean (Glycine max (L.) Merr.), mungbean (Vigna radiata (L.) R. Wilczek), cowpea (Vigna unguiculata (L.) Walp.), and common bean (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 22(4), 1909. https://doi.org/10.3390/ijms22041909
Nawaz, M., Ashraf, M. Y., Khan, A., & Nawaz, F. (2021). Salicylic acid– and ascorbic acid–induced salt tolerance in mung bean (Vigna radiata (L.) Wilczek) accompanied by oxidative defense mechanisms. Journal of Soil Science and Plant Nutrition, 21(3), 2057–2071. https://doi.org/10.1007/s42729-021-00502-3
Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., Ulfat, M., Alyemeni, M. N., & Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244–254. https://doi.org/10.1016/j.plaphy.2020.11.007
Nur, A. A., Soegianto, A., Sugiharto, A. N., & Nafisah, N. (2024). Evaluasi toleransi salinitas beberapa genotipe padi (Oryza sativa L.) menggunakan nilai indeks. Agro Bali : Agricultural Journal, 7(1), 179–193. https://doi.org/10.37637/ab.v7i1.1499
Selem, E., Hassan, A. A. S. A., Awad, M. F., Mansour, E., & Desoky, E.-S. M. (2022). Impact of exogenously sprayed antioxidants on physio-biochemical, agronomic, and quality parameters of potato in salt-affected soil. Plants, 11(2), 210. https://doi.org/10.3390/plants11020210
Siddiqui, M. H., Alamri, S. A., Al-Khaishany, M. Y., Al-Qutami, M. A., & Ali, H. M. (2018). Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai J. Sci., 45(3), 1296–1306. Retrieved from http://epg.science.cmu.ac.th/ejournal/
Silva, B. R. S. D., Lobato, E. M. S. G., Santos, L. A. D., Pereira, R. M., Batista, B. L., Alyemeni, M. N., Ahmad, P., & Lobato, A. K. D. S. (2023). How different Na+ concentrations affect anatomical, nutritional physiological, biochemical, and morphological aspects in soybean plants: A multidisciplinary and comparative approach. Agronomy, 13(1), 232. https://doi.org/10.3390/agronomy13010232
Wang, H., Lu, T., Yan, W., Yu, P., Fu, W., Li, J., Su, X., Chen, T., Fu, G., Wu, Z., & Feng, B. (2024). Transcriptome and metabolome analyses reveal ascorbic acid ameliorates cold tolerance in rice seedling plants. Agronomy, 14(4), 659. https://doi.org/10.3390/agronomy14040659
Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., & Kavi Kishor, P. B. (2020). Engineering salinity tolerance in plants: Progress and prospects. Planta, 251(4), 76. https://doi.org/10.1007/s00425-020-03366-6
Xu, Y., & Huang, B. (2017). Exogenous ascorbic acid mediated abiotic stress tolerance in plants. In M. A. Hossain, S. Munné-Bosch, D. J. Burritt, P. Diaz-Vivancos, M. Fujita, & A. Lorence (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance (pp. 233–253). Springer International Publishing. https://doi.org/10.1007/978-3-319-74057-7_9
Refbacks
- There are currently no refbacks.