Application of Central Composite Design in the Pyrolysis Process for Making Bio-Oil Based on Meranti Wood Sawdust (Shorea pinang)

Yeti Widyawati


Renewable energy sources are gaining importance to counteract the harmful effects of fossil fuel consumption on climate change. Among these sources, bioenergy is a viable option that can be derived from different forms of biomass and used as fuel for various purposes such as transportation, power generation, buildings, and industry. Meranti sawdust is a readily available biomass source in Indonesia that can be converted into bio-oil through pyrolytic processes. Therefore, this research aims to determine the impact of key parameters, including temperature, reaction time, and particle size, on the pyrolysis process and identify optimal yield conditions. The central composite design is the method used to determine the optimal value of the operating factors of the maximum yield of bio-oil. The results showed that the optimal conditions for the pyrolysis process are achieved at 377°C, 100 minutes of reaction time, and 0.46 mm particle size, yielding 41.48%.


bio-oil: central composite design; pyrolysis; meranti wood sawdust

Full Text:



Abnisa, F., Daud, W. M. A. W., & Sahu, J. N. (2011). Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass and Bioenergy, 35(8), 3604–3616.

Akwasi A. Boateng, Daugaard, D. E., Goldberg, N. M., & Hicks, K. B. (2007). Bench-Scale Fluidized-Bed Pyrolysis of Switchgrass for Bio-Oil Production †. Industrial and Engineering Chemistry Research, 46(7), 1891–1897.

Badan Pusat Statistik. (2022). Produksi Kayu Log Indonesia. Badan Pusat Statistik.

Balat, M. (2008). Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(7), 620–635.

Bob Boundy. (2010). Biomass Energy Data Book. Edition 3rd. Biomass Program Energy Efficiency and Renewable Energy U.S. Department of Energy (Biomass Program Energy Efficiency and Renewable Energy U.S. Department of Energy (ed.); 3rd ed.). U.S. Department of Energy, National Renewable Energy Laboratory.

Cao, J. P., Xiao, X. Bin, Zhang, S. Y., Zhao, X. Y., Sato, K., Ogawa, Y., Wei, X. Y., & Takarada, T. (2011). Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresource Technology, 102(2), 2009–2015.

Di Blasi, C., Signorelli, G., Di Russo, C., & Rea, G. (1999). Product distribution from pyrolysis of wood and agricultural residues. Industrial and Engineering Chemistry Research, 38(6), 2216–2224.

Dietrich Fengel, G. W. H. S. (1995). Kayu : kimia, ultrastruktur, reaksi-reaksi. Yogyakarta: Gadjah Mada University. Yogyakarta: Gadjah Mada University.

Easterly, J. (2002). Assessment of Bio-oil as a Replacement for Heating Oil. Northeast Regional Biomass Program, 1–18.

Girard, J. P. (1992). Smoking in Technology of Meat and Meat Products. (pp. 165–201).

IARC Monograph (Volume 45). (1989). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. Occupational Exposures in Petroleum Refining; Crude on and Major Petroleum Fuels. International Agency for Research on Cancer by the Secretariat of the W orld Health Organization.

Ji-lu, Z., Wei-ming, Y., & Na-na, W. (2008). Bio-oil production from cotton stalk. Energy Conversion and Management, 49, 1724–1730.

Khor, K. H., Lim, K. O., Zainal, Z. A., Pinang, P., & Tebal, N. (2009). Characterization of Bio-Oil: A By-Product from Slow Pyrolysis of Oil Palm Empty Fruit Bunches. American Journal of Applied Sciences, 6(9), 1647–1652.

Malabuyoc, J. A. S., Alcantara, V. A., Arocena, R. E., & Elegado, F. B. (2023). Substrate Optimization for Bioemulsification Using Saccharomyces cerevisiae 2031 by Response Surface Methodology. Agro Bali : Agricultural Journal, 6(1), 1–11.

Mohamed, A. R., Hamzah, Z., Daud, M. Z. M., & Zakaria, Z. (2013). The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed bed reactor. Procedia Engineering, 53, 185–191.

Mohameda, A. R., Hamzaha, Z., Zulkali, M., & Daud, M. (2013). The Effects of Holding Time and The Sweeping Nitrogen Gas Flowrates On The Pyrolysis Of EFB Using A Fixed Bed Reactor. Procedia Engineering, 53, 185–191.

Mohan, D., Pittman, C. U., & Philip, S. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review Dinesh. Energy & Fuels, 20(3), 848–889.

Mona, S., Aziz, A., Wahi, R., Ngaini, Z., & Hamdan, S. (2013). Bio-oils from microwave pyrolysis of agricultural wastes. Fuel Processing Technology, 106, 744–750.

Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., & Hicks, K. B. (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis 5. Biomass and Bioenergy, 34(1), 67–74.

Nugrahaningtyas, K. D., & Prasetyorini, E. (2019). Local Wood’s Bio-Oil Upgrading Using Non-sulfided (Co, Mo)/USY Catalyst. IOP Conference Series: Materials Science and Engineering, 578(1).

Nuraini, N., Osman, N. B., & Astuti, E. (2022). Bio-Oil Production Using Waste Biomass via Pyrolysis Process: Mini Review. Jurnal Bahan Alam Terbarukan, 11(1), 37–49.

Önal, E. P. (2011). Steam pyrolysis of an industrial waste for bio-oil production. Fuel Processing Technology, 92, 879–885.

Önal, E., Uzun, B. B., & Pütün, A. E. (2014). Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Conversion and Management, 78, 704–710.

Onay, O. (2007). Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis , using a well-swept fixed-bed reactor. Fuel Processing Technology, 88, 523–531.

Osman, N. B., Othman, H. T., Karim, R. A., Amir, M., & Mazlan, F. (2014). Biomass in Malaysia : Forestry-Based Residues. International Journal of Biomass & Renewables, 3(1), 7–14.

Özbay, N., Apaydin-Varol, E., Burcu Uzun, B., & Eren Pütün, A. (2008). Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy, 33(8), 1233–1240.

Rahimi, Z., Anand, A., & Gautam, S. (2022). An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus, 7(March), 100125.

Sari, T. I., & Dewi, R. U. (2009). Pembuatan Asap Cair Dari Limbah Serbuk Gergajian Kayu Meranti Sebagai Penghilang Bau Lateks. Jurnal Teknik Kimia, 16(1), 31–37.

Sonjaya, A. (2021). Aplikasi Disain Komposit Pusat Pada Proses Pengecatan Mobil Bekas. Jurnal Teknologi, 8(2), 143–156.

Sonjaya, A. N., Safitri, K., & Surjosatyo, A. (2023). Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier. International Journal of Renewable Energy Development, 12(1), 1–9.

Tareen, W. U. K., Dilbar, M. T., Farhan, M., Nawaz, M. A., Durrani, A. W., Memon, K. A., Mekhilef, S., Seyedmahmoudian, M., Horan, B., Amir, M., & Aamir, M. (2020). Present status and potential of biomass energy in pakistan based on existing and future renewable resources. Sustainability (Switzerland), 12(1).

The Japan Institute of Energy. (2008). The Asian Biomass Handbook. A Guide for Biomass Production and Utilization.

Tsai, W. T., Lee, M. K., & Chang, Y. M. (2006). Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 76(1–2), 230–237.

Yanik, J. (2007). Fast pyrolysis of agricultural wastes : Characterization of pyrolysis products. Fuel Processing Technology, 88, 942–947.


  • There are currently no refbacks.