Eksplorasi Data Wine Putih dan Karakteristik Kimiawi Menggunakan Metabase
Abstract
Karakteristik kimiawi wine putih memiliki pengaruh penting terhadap persepsi mutu dan penilaian kualitas produk. Beragam unsur seperti kadar alkohol, keasaman, gula residu, dan senyawa sulfur berperan dalam membentuk rasa, aroma, serta stabilitas wine. Analisis terhadap data wine putih dilakukan dengan pendekatan visualisasi interaktif menggunakan platform Metabase untuk mengungkap pola distribusi nilai kualitas dan hubungan antarparameter kimia. Dataset yang digunakan terdiri atas 4898 sampel dengan 11 variabel kimia dan satu skor kualitas dalam skala ordinal. Proses analisis meliputi pembersihan data, transformasi ke basis data relasional, dan pembangunan dashboard visual. Visualisasi yang dihasilkan mencakup bar chart, scatter plot, pie chart, dan area chart, yang digunakan untuk mengevaluasi tren dan perbandingan antar kategori mutu. Hasil menunjukkan bahwa wine berkualitas tinggi cenderung memiliki kadar alkohol lebih tinggi, sementara mayoritas sampel berada pada kategori kualitas sedang. Visualisasi berbasis Metabase memberikan kemudahan interpretasi data secara menyeluruh dan mendukung pengambilan keputusan berbasis bukti. Pendekatan ini juga dapat menjadi dasar pengembangan pemantauan mutu yang lebih sistematis serta peluang penerapan model prediktif pada tahap penelitian lanjutan.
Full Text:
PDFReferences
Golicic, S.L., 2022. Changes in sustainability in the global wine industry. International Journal of Wine Business Research, 34(3), pp.392–409. https://doi.org/10.1108/IJWBR-03-2021-0021.
Gutiérrez-Escobar, R., Aliaño-González, M.J. and Cantos-Villar, E., 2021. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules, 26(3), p.718. https://doi.org/10.3390/molecules26030718
Hernández-Montes, E., Zhang, Y., Chang, B.-M., Shcherbatyuk, N. and Keller, M., 2021. Soft, Sweet, and Colorful: Stratified Sampling Reveals Sequence of Events at the Onset of Grape Ripening. American Journal of Enology and Viticulture, 72(2), pp.137–151. https://doi.org/10.5344/ajev.2020.20050.
Ivanova, N., Yang, Q., Bastian, S.E.P., Wilkinson, K.L. and Ford, R., 2022. Consumer understanding of beer and wine body: An exploratory study of an ill-defined concept. Food Quality and Preference, 98, p.104383. https://doi.org/10.1016/j.foodqual.2021.104383.
Locke, J., Corbin, C.M., Cook, C.R., Ehrhart, M.G., Davis, C. and Lyon, A.R., 2023. Using Stakeholder Input to Guide Data Visualization and Reporting to Promote Evidence-based Practice Use in Public Schools. Global Implementation Research and Applications, 3(2), pp.99–111. https://doi.org/10.1007/s43477-023-00080-9.
Lyronis, A., Varouchakis, E.A., Anyfanti, I. and Karatzas, G.P., 2025. A Unified Open-Source Metabase Design for Hydro-meteorological Data Descriptive Analysis. Environmental Processes, 12(2), p.18. https://doi.org/10.1007/s40710-025-00758-2.
Nandwani, P. and Verma, R., 2021. A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), p.81. https://doi.org/10.1007/s13278-021-00776-6.
Shahrajabian, M.H. and Sun, W., 2024. Assessment of Wine Quality, Traceability and Detection of Grapes Wine, Detection of Harmful Substances in Alcohol and Liquor Composition Analysis. Letters in Drug Design & Discovery, 21(8), pp.1377–1399. https://doi.org/10.2174/1570180820666230228115450.
Sun, X., Zhang, F., Gutiérrez-Gamboa, G., Ge, Q., Xu, P., Zhang, Q., Fang, Y. and Ma, T., 2022. Real wine or not? Protecting wine with traceability and authenticity for consumers: chemical and technical basis, technique applications, challenge, and perspectives. Critical Reviews in Food Science and Nutrition, 62(24), pp.6783–6808. https://doi.org/10.1080/10408398.2021.1906624.
Yavari, A., Harrison, C.J., Gorji, S.A. and Shafiei, M., 2024. Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants. Sensors, 24(10), p.3239. https://doi.org/10.3390/s24103239.
Yuan, J., Chen, C., Yang, W., Liu, M., Xia, J. and Liu, S., 2021. A survey of visual analytics techniques for machine learning. Computational Visual Media, 7(1), pp.3–36. https://doi.org/10.1007/s41095-020-0191-7.
Refbacks
- There are currently no refbacks.