Sistem Pendeteksi Kecurangan Ujian Menggunakan YOLO: Identifikasi Penggunaan Ponsel dan Interaksi Mencurigakan
Abstract
Full Text:
PDFReferences
Abdi, H., dan Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. Computer Vision and Pattern Recognition 1–17. https://doi.org/10.48550/arXiv.2004.10934
Li, G., Zhang, M., Zhang, Q., & Lin, Z. (2022). Efficient binary 3D convolutional neural network and hardware accelerator. Journal of Real-Time Image Processing, 19(5), 61–71. https://doi.org/10.1007/s11554-021-01161-4
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context. In European Conference on Computer Vision (ECCV).
Redmon, J., & Farhadi, A. (2018). YOLO v.3. Tech Report, 1–6. https://pjreddie.com/media/files/papers/YOLOv3.pdf
Shaikat, Abu & Hussein, Molla Rashied & Tasnim, Rumana & Farhan, Ahmed & Khan, Ahsan & Mokhtar, Anowar & Rahman, Md. (2023). Computer Vision Based Automated Attendance System Using Face Recognition. 6th Industrial Engineering and Operations Management Bangladesh Conference. http://dx.doi.org/10.46254/BA06.20230105.
Vidhya S.G., Hema G.A., Jeevitha M.G., Nischitha K.B., and Vandana. (2022). Ai-Based Proctoring System For Online Tests. International Research Journal of Modernization in Engineering Technology and Science (IRJMETS), Volume:04 /Issue:07/July-2022. 4291-4298.
Yulita, I. N., Hariz, F. A., Suryana, I., & Prabuwono, A. S. (2023). Educational Innovation Faced with COVID-19: Deep Learning for Online Exam Cheating Detection. Education Sciences, 13(2), 194. https://doi.org/10.3390/educsci13020194.
Refbacks
- There are currently no refbacks.