Discriminating Estate and Smallholder Agricultural Systems Using a Multi-Sensor Agriculture-Weighted Object-Based Classification Framework in Tropical Landscapes

Yudi Triyanto, Jerry Maulana Siregar, Risna Maya Sari, Angga Putra Juledi

Abstract

The transformation of tropical landscapes due to agricultural expansion constitutes a significant global environmental challenge. Current land-cover classification methods, however, provide limited differentiation among agricultural management systems. This study develops an agriculture-focused land-cover classification workflow that fuses Landsat 9 optical imagery and PALSAR-2 L-band SAR across a ≈2,500 km² study area in Jambi Province, Sumatra, Indonesia, to enhance discrimination of crop systems and improve spatial coherence via object-based enhancement. A 22-class land-cover taxonomy was supported by 14,029 strategically collected training points. Feature engineering produced 29 predictor variables, including conventional vegetation indices, agricultural-specific metrics, water indicators, and SAR-derived structural features. Models were evaluated on an independent test dataset comprising 4,209 samples. An agriculture-weighted Random Forest classifier with strategic class weighting was implemented and followed by Simple Linear Iterative Clustering (SLIC) object-based enhancement to suppress speckle and enforce spatial contiguity. The classification achieved an overall accuracy of 53.7%, with exceptional performance for estate crop systems (F1 = 94%) and reliable forest discrimination. SLIC reduced salt-and-pepper noise by 99.5% and substantially improved spatial coherence metrics, transforming fragmented pixel-based outputs into operationally viable products. Despite these gains, discriminating smallholder mosaics remains challenging and likely requires additional temporal or higher-resolution inputs.

Keywords

agricultural system; land cover classification; multi-sensor remote sensing; object-based image analysis; random forest

Full Text:

PDF

References

Aldania, A. N. A., Soleh, A. M., & Notodiputro, K. A. (2023). A Comparative Study of CatBoost and Double Random Forest for Multi-class Classification. Jurnal RESTI, 7(1). https://doi.org/10.29207/resti.v7i1.4766

Bahri, K. A., Herdiyeni, Y., & Suprehatin, S. (2023). Credit Scoring Model for Farmers using Random Forest. Jurnal RESTI, 7(1). https://doi.org/10.29207/resti.v7i1.4583

Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204. https://doi.org/10.1016/j.rse.2017.10.005

Bhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., López-Martínez, C., & Rao, Y. S. (2021). Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178. https://doi.org/10.1016/j.isprsjprs.2021.05.013

Buchadas, A., Baumann, M., Meyfroidt, P., & Kuemmerle, T. (2022). Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands. Nature Sustainability, 5(7). https://doi.org/10.1038/s41893-022-00886-9

Chan, F., & Reba, M. (2025). Monitoring tropical soil moisture using remote sensing technology: A mini review. IOP Conference Series: Earth and Environmental Science, 1500, 012035. https://doi.org/10.1088/1755-1315/1500/1/012035

Danylo, O., Pirker, J., Lemoine, G., Ceccherini, G., See, L., McCallum, I., Hadi, Kraxner, F., Achard, F., & Fritz, S. (2021). A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00867-1

David, R. M., Rosser, N. J., & Donoghue, D. N. M. (2022). Remote sensing for monitoring tropical dryland forests: A review of current research, knowledge gaps and future directions for Southern Africa. Environmental Research Communications, 4(4). https://doi.org/10.1088/2515-7620/ac5b84

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J. F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., … Koetz, B. (2019). Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment, 221. https://doi.org/10.1016/j.rse.2018.11.007

Delsouc, A., Barber, M., Gallaud, A., Grings, F., Vidal-Páez, P., Pérez-Martínez, W., & Briceño-De-Urbaneja, I. (2020). Seasonality analysis of sentinel-1 and ALOS-2/PALSAR-2 backscattered power over salar de Aguas Calientes Sur, Chile. Remote Sensing, 12(6). https://doi.org/10.3390/rs12060941

Descals, A., Wich, S., Meijaard, E., Gaveau, D. L. A., Peedell, S., & Szantoi, Z. (2021). High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth System Science Data, 13(3). https://doi.org/10.5194/essd-13-1211-2021

Eisfelder, C., Boemke, B., Gessner, U., Sogno, P., Alemu, G., Hailu, R., Mesmer, C., & Huth, J. (2024). Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia. Remote Sensing, 16(5). https://doi.org/10.3390/rs16050866

Estefania-Salazar, E., & Iglesias, E. (2024). Enhancing spatio-temporal environmental analyses: A machine learning superpixel-based approach. Heliyon, 10(14), e34711. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e34711

Ginting, F. I., Rudiyanto, R., Fatchurahman, Mohd Shah, R., Che Soh, N., Giap, S. G. E., Fiantis, D., Setiawan, B. I., Schiller, S., Davitt, A., & Minasny, B. (2024). SEA-Rice-Ci10: High-resolution Mapping of Rice Cropping Intensity and Harvested Area Across Southeast Asia using the Integration of Sentinel-1 and Sentinel-2 Data. Earth System Science Data Discussions, 2024, 1–49. https://doi.org/10.5194/essd-2024-90

Goebel, M., Thiong’O, K., & Rienow, A. (2023). Object-based mapping and classification features for tropical highlands using sentinel-1, sentinel-2, and gedi canopy height data - a case study of the muringato catchment, kenya. Erdkunde, 77(1). https://doi.org/10.3112/erdkunde.2023.01.03

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202. https://doi.org/10.1016/j.rse.2017.06.031

Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., & Lobell, D. B. (2019). Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 228. https://doi.org/10.1016/j.rse.2019.04.016

Julianto, N., Widaryanto, E., & Ariffin, A. (2023). Efisiensi Penggunaan Lahan Melalui Pengaturan Pola Tanam Tumpangsari Bawang Merah (Allium ascalonicum L.) dan Cabai (Capsicum annum L.). Agro Bali : Agricultural Journal, 6, 350–360. https://doi.org/10.37637/ab.v6i2.1286

Karasiak, N., Dejoux, J. F., Monteil, C., & Sheeren, D. (2022). Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing. Machine Learning, 111(7). https://doi.org/10.1007/s10994-021-05972-1

Khan, W., Minallah, N., Sher, M., Khan, M. A., Rehman, A. ur, Al-Ansari, T., & Bermak, A. (2024). Advancing crop classification in smallholder agriculture: A multifaceted approach combining frequency-domain image co-registration, transformer-based parcel segmentation, and Bi-LSTM for crop classification. PLoS ONE, 19(3 March). https://doi.org/10.1371/journal.pone.0299350

Kusmanto, Samsir, S., Watrianthos, R., & Suryadi, S. (2023). Distribusi Spasial Unmet Need Pelayanan Kesehatan dengan Algoritma K-Means untuk Pemetaan Provinsi di Indonesia. Bulletin of Information Technology (BIT), 4(3). https://doi.org/10.47065/bit.v4i3.862

Lemettais, L., Alleaume, S., Luque, S., Laques, A. É., Alim, Y., Demagistri, L., & Bégué, A. (2025). Radiometric landscape: a new conceptual framework and operational approach for landscape characterisation and mapping. Geo-Spatial Information Science, 28(2). https://doi.org/10.1080/10095020.2024.2314558

Li, K., Zhao, W., Peng, R., & Ye, T. (2022). Multi-branch self-learning Vision Transformer (MSViT) for crop type mapping with Optical-SAR time-series. Computers and Electronics in Agriculture, 203. https://doi.org/10.1016/j.compag.2022.107497

Li, M., & Stein, A. (2020). Mapping land use from high resolution satellite images by exploiting the spatial arrangement of land cover objects. Remote Sensing, 12(24). https://doi.org/10.3390/rs12244158

Makate, C., Makate, M., Mutenje, M., Mango, N., & Siziba, S. (2019). Synergistic impacts of agricultural credit and extension on adoption of climate-smart agricultural technologies in southern Africa. Environmental Development, 32. https://doi.org/10.1016/j.envdev.2019.100458

Panboonyuen, T., Charoenphon, C., & Satirapod, C. (2023). MeViT: A Medium-Resolution Vision Transformer for Semantic Segmentation on Landsat Satellite Imagery for Agriculture in Thailand. Remote Sensing, 15, 5124. https://doi.org/10.3390/rs15215124

Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., Aung, K. S., Chishtie, F., & Saah, D. (2019). Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070831

Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X. P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022). The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Frontiers in Remote Sensing, 3. https://doi.org/10.3389/frsen.2022.856903

Rufin, P., Bey, A., Picoli, M., & Meyfroidt, P. (2022). Large-area mapping of active cropland and short-term fallows in smallholder landscapes using PlanetScope data. International Journal of Applied Earth Observation and Geoinformation, 112. https://doi.org/10.1016/j.jag.2022.102937

Rufin, P., Frantz, D., Ernst, S., Rabe, A., Griffiths, P., özdoğan, M., & Hostert, P. (2019). Mapping cropping practices on a national scale using intra-annual Landsat time series binning. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030232

Rufin, P., Hammer, P., Thomas, L.-F., Lisboa, S., Ribeiro, N., Sitoe, A., Hostert, P., & Meyfroidt, P. (2025). National level satellite-based crop field inventories in smallholder landscapes. https://doi.org/10.48550/arXiv.2507.10499

Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D. R., Sidike, P., & Fritschi, F. B. (2021). Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 174. https://doi.org/10.1016/j.isprsjprs.2021.02.008

Sari, I. L., Weston, C. J., Newnham, G. J., & Volkova, L. (2022). Developing multi-source indices to discriminate between native tropical forests, oil palm, and rubber plantations in Indonesia. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010003

Sekulić, A., Kilibarda, M., Heuvelink, G. B. M., Nikolić, M., & Bajat, B. (2020). Random Forest Spatial Interpolation. Remote Sensing, 12(10). https://doi.org/10.3390/rs12101687

Solekhah, B., Priyadarshini, R., & Maroeto, M. (2024). Kajian Pola Distribusi Tekstur terhadap Bahan Organik pada Berbagai Penggunaan Lahan. Agro Bali : Agricultural Journal, 7, 256–265. https://doi.org/10.37637/ab.v7i1.1571

Teo, H. C., Lamba, A., Ng, S. J. W., Nguyen, A. T., Dwiputra, A., Lim, A. J. Y., Nguyen, M. N., Tor-ngern, P., Zeng, Y., Dewi, S., & Koh, L. P. (2025). Reduction of deforestation by agroforestry in high carbon stock forests of Southeast Asia. Nature Sustainability, 8(4), 358–362. https://doi.org/10.1038/s41893-025-01532-w

Tikuye, B. G., Rusnak, M., Manjunatha, B. R., & Jose, J. (2023). Land Use and Land Cover Change Detection Using the Random Forest Approach: The Case of The Upper Blue Nile River Basin, Ethiopia. Global Challenges, 7(10). https://doi.org/10.1002/gch2.202300155

Toyota, T., Ishiyama, J., & Kimura, N. (2021). Measuring Deformed Sea Ice in Seasonal Ice Zones Using L-Band SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 59(11). https://doi.org/10.1109/TGRS.2020.3043335

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185. https://doi.org/10.1016/j.rse.2016.04.008

Wang, D., Liu, C. A., Zeng, Y., Tian, T., & Sun, Z. (2021). Dryland crop classification combining multitype features and multitemporal quad-polarimetric RADARSAT-2 imagery in Hebei plain, China. Sensors (Switzerland), 21(2). https://doi.org/10.3390/s21020332

Wang, R., Ma, L., He, G., Johnson, B., Yan, Z., Chang, M., & Liang, Y. (2024). Transformers for Remote Sensing: A Systematic Review and Analysis. Sensors, 24, 3495. https://doi.org/10.3390/s24113495

Watrianthos, R., Suryadi, S., Kusmanto, & Samsir, S. (2023). Pemetaan Tingkat Kriminalitas di Indonesia: Analisis Spasial dengan Pendekatan SIG pada Tingkat Provinsi. Bulletin of Information Technology (BIT), 4(3). https://doi.org/10.47065/bit.v4i3.861

Xu, Y., Ma, Y., & Zhang, Z. (2024). Self-supervised pre-training for large-scale crop mapping using Sentinel-2 time series. ISPRS Journal of Photogrammetry and Remote Sensing, 207. https://doi.org/10.1016/j.isprsjprs.2023.12.005

Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., & Gong, P. (2020). Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 12(2). https://doi.org/10.5194/essd-12-847-2020

Yang, W., Zhang, Y., Zhang, H., & Li, L. (2025). A Dynamic Adaptive Framework for Remote Sensing Imagery Superpixel Segmentation and Classification via Dual-Branch Feature Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP, 1–16. https://doi.org/10.1109/JSTARS.2025.3585544

Zhai, J., Xiao, C., Liu, X., & Liu, Y. (2024). Analysis of 10-m Sentinel-2 imagery and a re-normalization approach reveals a declining trend in the latest rubber plantations in Xishuangbanna. Advances in Space Research, 73(12). https://doi.org/10.1016/j.asr.2024.03.032

Zhang, C., Huang, C., Li, H., Liu, Q., Li, J., Bridhikitti, A., & Liu, G. (2020). Effect of textural features in remote sensed data on rubber plantation extraction at different levels of spatial resolution. Forests, 11(4). https://doi.org/10.3390/F11040399

Zhou, W., Rao, P., Jat, M. L., Balwinder-Singh, Poonia, S., Bijarniya, D., Kumar, M., Singh, L. K., Schulthess, U., Singh, R., & Jain, M. (2021). Using sentinel-2 to track field-level tillage practices at regional scales in smallholder systems. Remote Sensing, 13(24). https://doi.org/10.3390/rs13245108

Refbacks

  • There are currently no refbacks.