Optimizing Seedling Density per Planting Hole of Lettuce (Lactuca sativa L. var. longifolia) in a Deep Flow Technique Hydroponic System

I Gede Febriana, Gede Wijana, I Made Sukewijaya, Ida Ayu Putri Darmawati, Ni Luh Made Pradnyawathi

Abstract

Market demand for baby romaine lettuce (Lactuca sativa L. var. longifolia) continues to rise alongside the public’s growing preference for healthy lifestyles, yet its productivity still needs improvement. This study aims to evaluate the effect of seedling density per planting hole on the growth and yield of baby romaine lettuce using the Deep Flow Technique (DFT) hydroponic system and to determine the optimal number of seedlings. The experiment was conducted in a greenhouse in Pelaga Village, Bali, using a completely randomized design (CRD) with a single factor comprising five seedling densities (1, 2, 3, 4, and 5 seedlings per hole) and six replications, totaling 120 plants.  Growth and yield parameters were analyzed using ANOVA and LSD at a 5% significance level, with regression applied to fresh shoot and crop weight. Results showed that increasing the number of seedlings significantly affected plant height, stem diameter, chlorophyll content, fresh and dry shoot weight, and total fresh biomass. Shoot fresh weight increased linearly (Y = 97.86 + 11.71X; R² = 0.975), while crop fresh weight followed a quadratic trend (Y = 70.64 + 8.10X – 1.00X²; R² = 0.863), with the optimal yield obtained at three seedlings per hole. It is concluded that planting three seedlings per hole offers the best outcome in terms of both quality and quantity in a DFT hydroponic system.

Keywords

baby romaine lettuce; DFT hydroponics; optimal crop weight; seedling density; shoot biomass

Full Text:

PDF

References

Anderson, T., Martini, M., De Villiers, D., & Timmons, M. (2017). Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria) to Hydroponic Conditions at Different pH and Alkalinity. Horticulturae, 3(3), 41. https://doi.org/10.3390/horticulturae3030041

Bae, J. H., & Ko, B. (2025). Effect of Photosynthetic Photon Flux Density on Paprika Seedling Growth Using Rockwool Block. Plants, 14(9), 1378. https://doi.org/10.3390/plants14091378

Bilotta, S., Éthier, G., Laliberté, A., Goulet, M., Martel, M., Michaud, D., & Pepin, S. (2024). Synergetic light and cytokinin treatments mitigate the recombinant protein yield depression induced by high‐density cultivation of hydroponically‐grown Nicotiana benthamiana. Biotechnology and Bioengineering, 121(10), 3319–3328. https://doi.org/10.1002/bit.28781

Coêlho, E. dos S., Ribeiro, J. E. da S., Silva, E. F. da, Silva, T. I. da, Oliveira, P. H. de A., Dias, T. J., Barros Júnior, A. P., Silva, D. V., & Rodriguez, R. M. (2023). Abiotic factors and photosynthetically active photon density affect the physiological mechanisms of jaboticaba. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(5), 317–326. https://doi.org/10.1590/1807-1929/agriambi.v27n5p317-326

Damayanti, A. (2017). Analisis Usahatani Selada Sistem Hidroponik dengan Sistem NFT di Kecamatan Tenggarong Seberang. Migrobis Jurnal, 17(1), 34–36.

Elkins, C., & van Iersel, M. W. (2020). Longer Photoperiods with the Same Daily Light Integral Improve Growth of Rudbeckia Seedlings in a Greenhouse. HortScience, 55(10), 1676–1682. https://doi.org/10.21273/HORTSCI15200-20

Febrianti, T., Tsani, A., & Milla, A. N. (2019). Analisis Preferensi Konsumen Terhadap Sayuran Hidroponik Di Kota Sukabumi. Paspalum: Jurnal Ilmiah Pertanian, 7(1), 1. https://doi.org/10.35138/paspalum.v7i1.85

Hafidz, R. (2023). Mitigasi Risiko pada Rantai Pasok Selada Baby Romaine di PT Momenta Agrikultura ke Ritel XYZ, 1, 1–8.

Hartanti, A., & Sulistyowati, R. (2022). The Effectiveness of Using Types of Containers and Consentration AB Mix on the Growth and Production of White Packcoy (Brassica rapa L.) Var. Dakota Uses Wick System Hydroponics. Nabatia, 10(2), 99–109. https://doi.org/10.21070/nabatia.v10i2.1613

Jamaludin, M. , M. & R. G. M. (2018). Jumlah Tanaman Per Lubang Tanam terhadap Pertumbuhan dan Produksi Tanaman Pakcoy (Brassica oleraceae) pada Sistem Hidroponik NFT. Jurnal Wacana Pertanian, 14(1), 32–40.

Khan, N., Han, Y., Xing, F., Feng, L., Wang, Z., Wang, G., Yang, B., Fan, Z., Lei, Y., Xiong, S., Li, X., & Li, Y. (2019). Plant Density Influences Reproductive Growth, Lint Yield and Boll Spatial Distribution of Cotton. Agronomy, 10(1), 14. https://doi.org/10.3390/agronomy10010014

Kurniawan, A. (2017). Pertumbuhan Tanaman Selada pada Berbagai Kepadatan Bibit. Jurnal Pertanian, 33(1), 35–42.

Nafiah, O. Z., Nugrahani, P., & Makhziah, M. (2023a). The Effect of Hydroponic Nutrient Sources and Planting Media Types on the Growth and Production of Chinese Kale (Brassica oleraceae L.). Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(2), 443. https://doi.org/10.23960/jtep-l.v12i2.443-457

Nafiah, O. Z., Nugrahani, P., & Makhziah, M. (2023b). The Effect of Hydroponic Nutrient Sources and Planting Media Types on the Growth and Production of Chinese Kale (Brassica oleraceae L.). Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(2), 443. https://doi.org/10.23960/jtep-l.v12i2.443-457

Novitasari, D. (2020). Analisis Kelayakan Finansial Budidaya Selada Dengan Hidroponik Sederhana Skala Rumah Tangga. SEPA: Jurnal Sosial Ekonomi Pertanian Dan Agribisnis, 17(1), 19. https://doi.org/10.20961/sepa.v17i1.38060

Obia, A., Mulder, J., Hale, S. E., Nurida, N. L., & Cornelissen, G. (2018). The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLOS ONE, 13(5), e0196794. https://doi.org/10.1371/journal.pone.0196794

Polоviу, V., Kolesnyk, T., & Maiboroda, K. (2024). Assessment of the development of Lactuca sativa Batavia Aficion in hydroponic and aquaponic systems. PLANT AND SOIL SCIENCE, 15(1), 41–51. https://doi.org/10.31548/plant1.2024.41

Purbajanti, D. P. , S. W. , & K. F. (2017). Hidroponic: Bertanam Tanpa Tanah. EF Press Digimedia.

Rosyidah, I., Anshory, I., Sulistiyowati, I., & Syahrorini, S. (2024). Implementation of Image Processing On Hydroponic Pakcoy Plants To Detect AB MIX Nutrient Levels. Jambura Journal of Electrical and Electronics Engineering, 6(2), 234–239. https://doi.org/10.37905/jjeee.v6i2.26143

Santoso, K. , S. S. (2018). Pengaruh Jumlah Populasi Per Lubang Tanam dan Interval Pengairan Terhadap Pertumbuhan Tanaman Selada Wangi (Lactuca sativa var. Longifolia) dalam Sistem Vertikultur. Protan: Jurnal Produksi Tanaman, 6(9), 3–9.

Sipayung, P., Tarigan, R. S., & Pinem, R. T. T. (2025). Pengaruh Konsentrasi AB Mix terhadap Pertumbuhan dan Hasil Sawi Pakcoy (Brassica Rapa L.) Secara Hidroponik Sistem Rakit Apung. AGROSUSTAIN, 3(1), 32–38. https://doi.org/10.54367/agrosustain.v3i1.4619

Song, Q., Zhang, G., & Zhu, X.-G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 40(2), 108. https://doi.org/10.1071/FP12056

Sugianto, A., Sholihah, A., & Muslikah, S. (2024). The Using of Different Hydroponic Methods on the Growth and Yield of Two Pakcoy Varieties (Barissca rapa L.). Bio Web of Conferences, 143, 01005. https://doi.org/10.1051/bioconf/202414301005

Sulistyana, P. , M. J. H. , & J. J. (2016). Konsumsi Beras Organik pada Tingkat Rumah Tangga di Kota Yogyakarta. Agro Ekonomi, 1(1), 1–10.

Suwitra, I. K., Amalia, A. F., Firdaus, J., Dalapati, A., & Fadhilah, N. (2021). Study of ABMix nutrition concentration and water concentration in hydroponics with Deep Film Technique (DFT) system in Central Sulawesi. IOP Conference Series: Earth and Environmental Science, 807(4), 042009. https://doi.org/10.1088/1755-1315/807/4/042009

Vega, I., Bien-amié, D., Augustin, G., Heiden, W., & Heiden, N. (2022). DFT hydroponic system for lettuce and pepper production with limited electricity. https://doi.org/10.31220/agriRxiv.2022.00136

Zhen, S., Haidekker, M., & van Iersel, M. W. (2019). Far‐red light enhances photochemical efficiency in a wavelength‐dependent manner. Physiologia Plantarum, 167(1), 21–33. https://doi.org/10.1111/ppl.12834

Refbacks

  • There are currently no refbacks.