Antioxidant Activity, Ascorbic Acid, and Beta Carotene of Sumatran Red Tampoi (Baccaurea costulata) and Rambai (Baccaurea motleyana) Fruits

Erika Pardede, Elisa Julianti, Ferlist Rio Siahaan, Claudia Virani Harefa

Abstract

This study evaluated the antioxidant activity, ascorbic acid, and beta-carotene levels in two underutilized species of  Sumatran Baccaurea Lour. The fruit of red tampoi or Baccaurea costulata (Miq.) Műll. Arg is orange, while rambai or Baccaurea motleyana (Műll. Arg) Műll. Arg has a pale-yellow color with an “a” value of 29.22±0.51 and 2.67±0.58, respectively, measured with a hand chromameter. The half-maximum inhibitory concentration (IC50) of the free radical scavenging activities of both fruits was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. The IC50 of B. costulata (51.63±3.42 µg/g) indicated that its fruit juice has a strong antioxidant property, while B. motleyana (76.95±1.28 µg/g) has a moderately antioxidant characteristic.  A high antioxidant activity of B. costulata was followed by a high amount of ascorbic acid (55.86±1.73 mg/100g) and beta carotene (150.77±2.16 μg/g), in comparison to those of B. motleyana, which has a lower amount of ascorbic acid (37.30±2.34 mg/100g) and beta carotene (25.36±1.37 μg/g). It was also found that there was a moderate correlation between scavenging capacities (expressed as the reciprocal of the calculated IC50 value), a strong positive correlation with beta-carotene (r2 = 0.90), and a moderately positive correlation with ascorbic acid (r2 = 0.77). It can be concluded that both Baccaurea fruits are nutritious foods due to their high ascorbic acid and beta-carotene content, and they also possess high antioxidant properties. Both ascorbic acid and beta-carotene contributed significantly to the antioxidant activity.

Keywords

antioxidant activity; free radical scavenger; phytonutrient; underutilized fruits

Full Text:

PDF

References

Bakar, M.F., Ahmad, N.E., Karim, F.A., Saib, S. (2014). Phytochemicals and antioxidative properties of borneo indigenous liposu (Baccaurea lanceolata) and tampoi (Baccaurea macrocarpa) fruits. Antioxidants 3: 516-525.

https://doi.org/10.3390/antiox3030516.

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., Chang, C.M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326.

https://doi.org /10.3390/molecules27041326.

Bhoot, H.R., Zamwar, U.M., Chakole, S., Anjankar, A. (2023). Dietary Sources, Bioavailability, and Functions of Ascorbic Acid (Vitamin C) and Its Role in the Common Cold, Tissue Healing, and Iron Metabolism. Cureus 15(11): e49308.

https://doi.org /10.7759/cureus.49308.

Charu, T.K., Chowdhury, N.S., Fatema, I.B., Liya, F.I., Salsabil, L. (2021). Traditional and Pharmacological Reports of The Genus Baccaurea. A Review. Am J Biomed Sci & Res. 11 (6): 494-508.

https://doi.org/10.34297/AJBSR.2021.11.001683.

Chen, J., Wu, F., Wang, H., Guo, C., Zhang, W., Luo, P., Zhou, J., Hao, W., Yang, G., Huang, J. (2023). Identification of key taste components in Baccaurea ramiflora Lour. fruit using non-targeted metabolomics. Food Science and Human Wellness 12: 94-101.

https://doi.org/10.1016/j.fshw.2022.07.027

Debnath, P., Ahmad, S.K., Mahedi, R.A., Ganguly, A., Sarker, K.K. (2022). Bioactive compounds and functional properties of rambai (Baccaurea motleyana Müll. Arg.) fruit: A comprehensive review. Food Science & Nutrition 10: 218–226.

https://doi.org /10.1002/fsn3.2661.

Edge, R., Truscott, T.G.. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids-A Review. 2018. Antioxidants (Basel) 7(1):5.

https://doi.org /10.3390/antiox7010005.

Espley, R.V., Jaakola, L. (2023). The role of environmental stress in fruit pigmentation. Plant Cell Environ. 46: 3663-3679.

https://doi.org /10.1111/pce.14684.

Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 64(6):1451-69.

https://doi.org /10.1093/jxb/ert035.

Fatmawaty, Anggreni, N., Fadhil, N., Prasasty, V. (2019). Potential In Vitro and In Vivo Antioxidant Activities from Piper Crocatum and Persea Americana Leaf Extracts. Biomedical and Pharmacology Journal. Vol. 12(2): 661-667.

https://doi.org/ 10.13005/bpj/1686.

Gęgotek, A., Skrzydlewska, E. (2022). Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 11(10): 1993.

https://doi.org /10.3390/antiox11101993.

Hagos, M., Redi-Abshiro, M., Chandravanshi, B.S., Yaya, E.E. (2022). Development of Analytical Methods for Determination of β-Carotene in Pumpkin (Cucurbita maxima) Flesh, Peel, and Seed Powder Samples. Int J Anal Chem. 2022:9363692.

https://doi.org /10.1155/2022/9363692.

Harianja, A.H., Sinaga, A.M., Hawari, F.A., Fauzi, R. (2021). The Importance of the Utilization of Forest Fruits in Batak Toba Community. Indonesian Journal of Forestry Research 8 (1), 1-12.

Hossain, M.M., Rahim, M.A., Haque, M.R. (2021). Biochemical properties of some important underutilized minor fruit. Journal of Agriculture and Food Research 5:100148.

https://doi.org /10.1016/j.jafr.2021.100148.

Hu, D.G., Sun, C.H., Ma, Q.J., You, C.X., Cheng, L., Hao, Y.J. (2016). MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples. Plant Physiol. 170(3): 1315-30.

https://doi.org/ 10.1104/pp.15.01333

Huang, X., Wang, C., Zhao, Y., Sun, C., Hu, D. (2021). Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 227(8): 1-10.

https://doi.org /10.1038/s41438-021-00702-z.

Jiang, W., Li, N., Zhang, D., Meinhardt, L., Cao, B., Li, Y. (2020) Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv. ‘Lingwuchangzao’). PLoS ONE 15(11): e0241491.

https://doi.org/10.1371/journal.pone.0241491.

Junge, J.Y.a, Bertelsen, A.S., Mielby, L.A., Zeng, Y., Sun, Y., Byrne, D.V., Kidmose, U. (2020). Taste Interactions between Sweetness of Sucrose and Sourness of Citric and Tartaric Acid among Chinese and Danish Consumers. Foods 2020, 9, 1425.

https://doi.org / 10.3390/foods9101425.

Junge, J.Y.,b Andersen, G., Kidmose, U. (2023). Suppression of Sweetness: Evidence for Central Mechanism for Suppression of Sweetness from Sucrose by Citric Acid. Chemical Senses. 48.

https://doi.org/10.1093/chemse/bjad036.

Khoo, H.E., Azlan, A., Kong, K.W., Ismail, A. (2016). Phytochemicals and medicinal properties of indigenous tropical fruits with potential for commercial development. Evidence-Based Complementary and Alternative Medicine Volume 2016, Article ID 7591951, 20 pages.

https://doi.org/10.1155/2016/7591951.

Lee, C.Y., Nanah, C.N., Held, R.A., Clark, A.R., Huynh, U.G., Maraskine, M.C., Uzarski, R.L., McCracken, J., Sharma, A. (2016) Effect of electron donating groups on polyphenol-based antioxidant dendrimers. Biochemie 111:125-34.

https://doi.org/ 10.1016/j.biochi.2015.02.001.

Macan, A.M., Kraljević, T.G., Raić-Malić, S. (2019). Therapeutic perspective of vitamin C and its derivatives. Antioxidants 8(8): 247.

https://doi.org/10.3390/antiox8080247.

Maoka, T. (2019). Carotenoids as natural functional pigments. J Nat Med. 2020; 74(1): 1–16.

https://doi.org /10.1007/s11418-01901364-x.

Masriani and Fadly, D. (2022). Nutritional profiles of Baccaurea macrocarpa fruit. Food Research 6 (2): 202–208.

https://doi.org/10.26656/fr.2017.6(2).273.

Mokhtar, S.I., Leong, P.C., Ven, L.E., Aziz, N.A.B. (2014). Total Phenolic Contents, Antioxidant Activities and Organic Acids Composition of Three Selected Fruit Extracts at Different Maturity Stages. J. Trop. Resour. Sustain. Sci. 2: 40-46.

https://doi.org / 10.47253/jtrss.v2i2.491.

Munteanu, I.G., Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci. 22(7):3380.

https://doi.org / 10.3390/ijms22073380.

Nielsen, S.S. (2017). Vitamin C determination by indophenol method. In Nielsen SS (ed). Food Analysis Laboratory Manual. Springer International Publishing. https://doi.org/10.1007/978-3-319-44127-6_15

Orjiakor, S.N., Obiora, C.U., Ezembu, E.N., Okocha, S.K., Ezegbe, C.C., Ezeh, M.C., Orjika, G.C. (2023). Improving the Beta-carotene Content of Carrots through Process Optimization. Journal of Advances in Food Science & Technology 10 (4), 34–41.

https://doi.org / 10.56557/jafsat/2023/v10i48398.

Pardede, E., Julianti, E. (2023). Beta carotene, vitamin C dan sifat antioksidan buah jentikan (Baccaurea polyneura Hook.f.) asal Sumatera. Gunung Djati Conferences Series 18: 94-100.

Pérez-Gálvez, A., Viera, I., Roca, M. (2020). Carotenoids and Chlorophylls as Antioxidants. Antioxidants (Basel). 9;9(6):505.

https://doi.org/10.3390/antiox9060505.

Permatasari, L., Riyanto, S., Rohman, A.B. (2019). Baccaurea racemosa (Reinw. ex Blume) Müll. Arg. pulp: a potential natural antioxidant. Food Research 3 (6): 713 – 719. https://doi.org /10.26656/fr.2017.3(6).165.

Ramadhanty, N.A., Poerwanto, R., Matra, D.D. (2023). Different harvesting time on quality of reddish-fleshly rambai (Baccaurea motleyana Muell. Arg.). AIP Conf. Proc. 2616, 050006.

https://doi.org/10.1063/5.0135755

Rohilla, S. (2023). A review on bioactive compounds and health benefits of Baccaurea ramiflora. Food Bioeng. 2023;1–11.

https://doi.org/10.1002/fbe2.12069.

Shaharuddin, S., Husen, R., Othman, A. (2021). Nutritional values of Baccaurea pubera and comparative evaluation of SHS treatment on its antioxidant properties. J Food Sci Technol. 58(6):2360-2367.

https://doi.org/10.1007/s13197-020-04748-0.

Salusu, H.D., Ariyani, F., Nurmarini, E., Zarta, A. R. (2020). Kandungan Vitamin C pada Tiga Jenis Buah-Buahan Genus Baccaurea). Buletin Loupe 16(02): 12-16.

https://doi.org/10.51967/buletinloupe.v16i02.237.

Saswita, H.M., Syamsuardi, Nurainas. (2023). Inventory of the genus Baccaurea spp. (Phyllantaceae). Int J Progres Sci & Tech. 40 (2): 264-269.

Sridhar, K., Charles, A.L. (2018). Comparative study of DPPH, ABTS, FRAP, and ORAC assays for determination of dose-dependent antioxidant activities of commercial grape cultivars in Taiwan. Food Chemistry 275: 41-49.

https://doi.org / 10.1016/j.foodchem.2018.09.040

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. (2015). Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci. 16 (10):24673-706.

https://doi.org/10.3390/ijms161024673.

Susmitha, T., Bagchi, T.B., Deb, B.S., Biswas, T., Adak, T., Banerjee, H., Pal, S. (2022). Evaluation of colour, texture and nutritional properties of Pigmented Rice Based Fermented Steamed Food- Idli. Food Chemistry Advances (1):100021. https://doi.org/10.1016/j.focha.2022.100021.

Toti, E., Chen, C.Y., Palmery, M., Valencia, D.V., Peluso, I. (2018). Non-provitamin A and provitamin A carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition?". Oxidative Medicine and Cellular Longevity 2018: 4637861.

https://doi.org/10.1155/2018/4637861.

Zhang, Q.Y., Gu, K.D., Cheng, L., Wang, J.H., Yu, J.Q., Wang, X.F., You, C.X., Hu, D.G., Hao, Y.J. (2020). BTB-TAZ Domain Protein MdBT2 Modulates Malate Accumulation and Vacuolar Acidification in Response to Nitrate. Plant Physiol. 183(2):750-764. https://doi.org/10.1104/pp.20.00208.

Refbacks

  • There are currently no refbacks.