Increasing mustard (Brassica juncea L.) yields through exposure sound and preventive pest management based on refugia plants

Asritanarni Munar, Widihastuty Widihastuty, Rini Susanti, Muhammad Hanafi, Imam Hartono Bangun

Abstract

AbstractIn Indonesia, mustard plants will increase by 8.2% in 2021, but more than that is needed to meet the community's needs due to a growing population. Pests and fertilization problems hinder expected growth.  The provision of plant fertilizers can be replaced through the application of sound. Exposure sounds to plants can increase plant growth by opening stomata, improving water absorption, and increasing plant nutrient uptake. This study aimed to examine the application of sound effects and refugia plants t890po increase the growth and yield of mustard greens (Brassica juncea L.). The study used a Time's Series Randomized Block Design with 3 replications. The first factor is sound applications (S) consisting of S0 = without sound, S1 = rock music (Frequency 21-14,000 Hz), and S2 = classical sound (Frequency 21-14,000 Hz). The second factor is the refugia plant (R) consisting of R0 = without refugia, R1 = Tagetes erecta L., R2 = Zinnia elegans L, and R3 = Ocimum bassilicum L. The application of classical sound frequency (20-14,000 Hz) affects the growth process of mustard plants through the increase in plant height (14.5%), leaf area (20.92%), wet weight (3.5%), dry weight (26.41%), total chlorophyll (11.62%) and plant N content (31.03%). Meanwhile, rock music frequency (20-14,000 Hz) can increase plant height (2.97%), leaf area (19.11%), and total stomata (9.6%). Refugia plants affect the process of plant protection through their ability to attract pests in the research area.

Keywords

music; organic; yield mustard; refugia.

Full Text:

PDF

References

Altieri M, Nicholls C. 2018. Biodiversity and pest management in agroecosystems. CRC Press.

Amri MFA. 2022. IMPLEMENTATION OF SUSTAINABLE DEVELOPMENT GOALS ON FOOD SECURITY IN FACING GLOBAL CLIMATE CHANGES:(Descriptive Analysis Study at the Dinas Ketahanan Pangan, Pertanian dan Perikanan Kota Bekasi). Universal Journal. 9(4).

Anggraini E, Pardingotan R, Herlinda S, Irsan C, Harun MU. 2020. DIVERSITY OF PREDATORY ARTHROPODS IN SOYBEAN (GLYCINE MAX L) REFUGIA. Journal of Applied Agricultural Science and Technology E-ISSN. 4(2):101–117.

Arlius F, Putri RE, Putri NS, Putri I. 2021. Effect of Acoustic Waves on the Growth and Productivity of Sawi Plants (Brassica Juncea L.). Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 757. IOP Publishing. hlm. 012021.

Asmoro PP, Winasa IW. 2021. Olfactory Response of Plutella xylostella (Lepidoptera: Yponomeutidae) Adults to Refugia Plant. Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 752. IOP Publishing. hlm. 012039.

Bahtiar B, Widodo CS, Santoso DR. 2015. Influence of Rice Seed Replanting Growth (Oryza sativa L.) Inpari-4 Varieties with Giving Frequency of Sound Waves. Natural B, Journal of Health and Environmental Sciences. 3(1):53–58.

Bhandawat A, Jayaswall K. 2022. Biological relevance of sound in plants. Environ Exp Bot. 200.doi:10.1016/j.envexpbot.2022.104919.

Carlson D. 2013. Sonic bloom organic farming made easy! The best organic fertilizer in the world. Retrieved April. 3:2017.

Chivukula V, Ramaswamy S. 2014. Effect of different types of music on Rosa chinensis plants. International journal of environmental science and development. 5(5):431.

Ekici F, Ekici E, Aydin F. 2007. Utility of Concept Cartoons in Diagnosing and Overcoming Misconceptions Related to Photosynthesis. International Journal of Environmental and Science Education. 2(4):111–124.

Galina M, Safitri C, Bukhori I, Silitonga A, Suhartomo A. 2022. An implementation of smart agriculture for optimizing growth using sonic bloom and IoT integrated. JURNAL INFOTEL. 14(1):65–74.doi:10.20895/infotel.v14i1.725.

Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park S-C, Jeong M-J, Bae H. 2016. Corrigendum: exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci Rep. 6.

Hassanien RHE, Hou T, Li Y, Li B. 2014. Advances in effects of sound waves on plants. J Integr Agric. 13(2):335–348.

Hou T, Li B, Teng G, Qi L, Hou K. 2010. Research and application progress of plant acoustic frequency technology. Journal of China Agricultural University. 15(1):106–110.

Hou TZ, Mooneyham RE. 1999. Applied Studies of the Plant Meridian System II. Agri-wave Technology Increases the Yield and Quality of Spinach and Lettuce and Enhances the Disease Resistant Properties of Spinach. Am J Chin Med (Gard City N Y). 27(02):131–141.

Jiang S, Huang J. 2012. Effects of music acoustic frequency on greenhouse vegetable. Journal of Zhejiang University of Science and Technology. 24:287–293.

Kadarisman N, Agustika DK, Purwanto A, Alvianty V, Wibowo B. 2019. Characterization of sound spectrum based on natural animals as an alternative source of harmonic system audio bio stimulators for increasing productivity of food plants. Di dalam: Journal of Physics: Conference Series. Vol. 1387. IOP Publishing. hlm. 012098.

Kadarmanto, Rita Setiawati, Tarida Herdina Marpaung, Amelia Dertta Irjayanti, Agung Setyo Wibowo, Ni Putu Sumartini, Zelani Nurfalah, Alevareza Dipta Adani, Monica Seftaviani Sijabat, Nurmaida Situmorang, et al. 2021. Statistik Hortikultura 2021. Volume ke-5204003.

Klimatologi SDS. 2021. Buletin Prakiraan April 2021.

Kurniawati N, Martono E. 2015. Peran Tumbuhan Berbunga sebagai Media Konservasi Artropoda Musuh Alami (The Role of Flowering Plants in Conserving Arthropod Natural Enemies). Jurnal Perlindungan Tanaman Indonesia. 19(2):53–59.

Manullang J. 2012. Pengaruh Frekuensi Ultrasonik Terhadap Pola Perilaku Belalang Kumbara Sebagai Pengendali Hama Secara Elektronik. Generasi Kampus. 5(1).

Meng Q, Zhou Q, Zheng S, Gao Y. 2012. Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia. 16:346–352.

Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS. 2017. Soil carbon 4 per mille. Geoderma. 292:59–86.

Munar A, Bangun IH, Kurniawan HA, Lubis E, Hasibuan WR. 2022. Paparan Suara yang Diperlakukan pada Tanah dan Air terhadap Populasi Mikroba dan P Tersedia Tanah. Agro Bali: Agricultural Journal. 5(3):513–519.

Munar A, Sembiring M, Tantawi AR, Sabrina T. 2020. Effect of sound treatment on phosphate solubilizing microbial activity. IOP Conf Ser Earth Environ Sci. 454(1):12145.doi:10.1088/1755-1315/454/1/012145.

Munar A, Tengku Sabrina, Sri Utami, Widihastuty. 2023. Application of Sound and Phosphate Solubilizing Microbs on Soil Nutrient Levels and Growth of Maize (Zea mays L.). PLANTA TROPIKA: Journal of Agro Science.

Murni N, Achyani A, Santoso H. 2018. Pengaruh amplitude sonic bloom single tone terhadap perkecambahan benih tomat cherry (lycopersicum cerasiforme mill.) sebagai desain sumber belajar biologi. BIOEDUKASI (Jurnal Pendidikan Biologi). 9(2):154–165.

Nawawi AIFA, Suputa, Hadi S. 2020. Acoustic interruption on the imago of brown planthopper and the number of offspring produced. Di dalam: AIP Conference Proceedings. Vol. 2260. AIP Publishing LLC. hlm. 090002.

Perkasa BA. 2020. Keanekaragaman Serangga pada Pertanaman Kopi yang ditanam Secara Monokultur dan Tumpang Sari Jeruk di Desa Hinalang Kecamatan Purba Kabupaten Simalungun.

Pirngadi H, Nurhidayati T, Nurhatika S. 2010. Aplikasi Gelombang Suara untuk Megusir Hama Wereng. Berk Penel. Hayati Edisi Khusus F. 4:19–24.

Prasetyo J, I. B. Lazuardi. 2017. Pemaparan Teknologi Sonic Bloom Dengan Pemanfaatan Jenis Musik terhadap Pertumbuhan Vegetatif Tanaman Selada Krop (Lactuca sativa L.). urnal Keteknikan Pertanian Tropis dan Biosistem. 5(2):189–199.

Prasetyo J, Lazuardi IB. 2019. Pemaparan Teknologi Sonic Bloom Dengan Pemanfaatan Jenis MusikTerhadap Pertumbuhan Vegetatif Tanaman Selada Krop (Lactuca Sativa L). Jurnal Keteknikan Pertanian Tropis dan Biosistem. 5(2):178–188.

Purba KF, Yazid M, Hasmeda M, Adriani D, Tafarini MF. 2020. Technical efficiency and factors affecting rice production in tidal lowlands of south sumatra province Indonesia. Potravinarstvo Slovak Journal of Food Sciences. 14:101–111.doi:10.5219/1287.

Qi L, Teng G, Hou T, Zhu B, Liu X. 2009. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. Di dalam: International Conference on Computer and Computing Technologies in Agriculture. Springer. hlm. 449–454.

Sarkar T, Salauddin M, Roy S, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KRR. 2022. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Crit Rev Food Sci Nutr.:1–55.

Sigmarawan TG, Wijaya I, Budisanjaya IPG. 2020. Musik gamelan gong kebyar dan cahaya LED (light emitting diode) merah-biru meningkatkan pertumbuhan dan produktivitas sawi pakcoy (Brassica rapa L.). Jurnal BETA (Biosistem Dan Teknik Pertanian). 28(2):1–43.

del Stabile F, Marsili V, Forti L, Arru L. 2022. Is There a Role for Sound in Plants? Plants. 11(18).doi:10.3390/plants11182391.

Suryana A, Hartono MD, Suryana MR. 2021. Impacts of the COVID-19 pandemic on food and nutrition security in Indonesia. Di dalam: IOP Conference Series: Earth and Environmental Science. Vol. 892. IOP Publishing. hlm. 012033.

Tao L, Yuexia H, Guoyou C, Ziwei S, Baoshu X, Zulai T. 2001. Analysis of the effect of strong sound wave on plant cells cycles using flow cytometry. Shengwu Wuli Xuebao. 17(1):195–198.

Tatuhey RR, Pattiselanno AE, Sahusilawane AM. 2020. Pengetahuan, Sikap dan Perilaku Petani terhadap Penggunaan Pestisida Kimia di Kota Ambon. Agrilan: Jurnal Agribisnis Kepulauan. 8(1):1–13.

Weber DC, Skillings JH. 2018. A first Course in the Design of Experiments: A linear Models Approach. Routledge.

Yiyao L, Bochu W, Hucheng Z. 2000. The biological effects of plant caused by environmental stress stimulation. Letters in Biotechnology. 11(3):219–222.

Zhao HC, Wu J, Xi BS, Wang BC. 2002. Effects of sound-wave stimulation on the secondary structure of plasma membrane protein of tobacco cells. Colloids Surf B Biointerfaces. 25(1):29–32.

Zhu J, Jiang S, Shen L. 2011. Effects of music acoustic frequency on indoleacetic acid in plants. Agricultural Science & Technology-Hunan. 12(12):1749–1752.

Zulkifli TBH, Tampubolon K, Nadhira A, Berliana Y, Wahyudi E, Razali R, Musril M. 2020. Analisis pertumbuhan, asimilasi bersih dan produksi terung (solanum melongena l.): dosis pupuk kandang kambing dan pupuk npk. Jurnal Agrotek Tropika. 8(2):295–310.

Refbacks

  • There are currently no refbacks.