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Abstract. The transformation of tropical landscapes due to agricultural expansion constitutes a significant global 

environmental challenge. Current land-cover classification methods, however, provide limited differentiation 

among agricultural management systems. This study develops an agriculture-focused land-cover classification 

workflow that fuses Landsat 9 optical imagery and PALSAR-2 L-band SAR across a ≈2,500 km² study area in 

Jambi Province, Sumatra, Indonesia, to enhance discrimination of crop systems and improve spatial coherence via 

object-based enhancement. A 22-class land-cover taxonomy was supported by 14,029 strategically collected 

training points. Feature engineering produced 29 predictor variables, including conventional vegetation indices, 

agricultural-specific metrics, water indicators, and SAR-derived structural features. Models were evaluated on an 

independent test dataset comprising 4,209 samples. An agriculture-weighted Random Forest classifier with 

strategic class weighting was implemented and followed by Simple Linear Iterative Clustering (SLIC) object-

based enhancement to suppress speckle and enforce spatial contiguity. The classification achieved an overall 

accuracy of 53.7%, with exceptional performance for estate crop systems (F1 = 94%) and reliable forest 

discrimination. SLIC reduced salt-and-pepper noise by 99.5% and substantially improved spatial coherence 

metrics, transforming fragmented pixel-based outputs into operationally viable products. Despite these gains, 

discriminating smallholder mosaics remains challenging and likely requires additional temporal or higher-

resolution inputs.  

Keywords: agricultural system; land cover classification; multi-sensor remote sensing; object-based image  

 analysis; random forest 
 

INTRODUCTION 

Tropical landscape transformation 

represents one of the most urgent and 

structurally complex environmental 

challenges of the twenty-first century, with 

profound implications for ecosystem 

functioning, climate regulation, and 

sustainable development trajectories. 

Southeast Asian tropical forest biomes, 

globally acknowledged for their exceptional 

biological diversity and regulatory ecosystem 

services, continue to experience rapid 

degradation predominantly driven by 

agricultural expansion, market-oriented land 

commodification, and intensifying 

anthropogenic disturbances. In Indonesia, for 

instance, intercropping practices, such as 

those involving shallots and chili, have been 

shown to increase land-use efficiency and 

system heterogeneity (Julianto et al., 2023). 

Robust, spatially explicit, and temporally 

consistent land-cover information has 

therefore become indispensable for evidence-

based environmental governance, sustainable 

land-use planning, and compliance with 

international climate accountability 

frameworks, including the Reducing 

Emissions from Deforestation and Forest 

Degradation (REDD+) initiative. However, 

the inherent biophysical and structural 

complexity of tropical landscapes continues 

to impede reliable monitoring. Dense multi-

layered canopies, fine-scale spatial 

heterogeneity, and sensor-specific limitations 

collectively constrain the performance and 

generalizability of conventional remote 

sensing techniques, resulting in persistent 

accuracy gaps and classification ambiguities 
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(David et al., 2022; Goebel et al., 2023; 

Lemettais et al., 2025; Chan & Reba, 2025). 

This challenge is further compounded by 

underlying soil physical variations, such as 

differences in texture and organic matter 

content across land uses that affect surface 

reflectance and backscatter responses 

(Solekhah et al., 2024). 

Within this context, agricultural 

expansion remains the primary driver of 

tropical deforestation globally, underscoring 

the need to differentiate agricultural land 

systems with greater precision. 

Distinguishing among agricultural 

management regimes is no longer a 

descriptive exercise, but a scientific and 

policy-critical priority due to their 

differentiated ecological footprints, carbon 

outcomes, socio-economic implications, and 

governance challenges. Notwithstanding 

recent advances, prevailing land-cover 

classification models continue to struggle to 

accurately discriminate industrial 

monoculture estates from fragmented 

smallholder mosaics, particularly within 

heterogeneous tropical agro-ecological 

matrices, ultimately constraining operational 

decision-making and targeted intervention 

design (Sekulić et al., 2020); (Bahri et al., 

2023). 

This research addresses these 

methodological and operational gaps by 

developing an agricultural-centric land-cover 

classification framework that integrates 

multi-sensor remote sensing, domain-specific 

feature engineering, and object-based spatial 

enhancement. Specifically, it evaluates (i) the 

effectiveness of multi-sensor feature 

engineering in differentiating agricultural 

production systems, and (ii) the value-added 

contribution of agricultural-specific 

weighting strategies within machine 

learning–based classification to enhance 

class separability of crop management 

systems. By situating the empirical 

investigation in Jambi Province, Sumatra, an 

ecologically sensitive yet economically 

contested region, this study offers both 

methodological and policy relevance. 

Uniquely, this study contributes original 

methodological advancement by establishing 

an integrated multi-sensor, agriculture-

weighted, and object-based classification 

framework capable of quantitatively 

differentiating estate and smallholder 

agricultural systems within complex tropical 

landscapes. The resulting framework is 

expected to enhance the precision, 

interpretability, and applicability of tropical 

land-cover products for sustainable land 

governance, environmental monitoring, and 

the implementation of climate policy. 

METHODS  

Study Area.  

The research was conducted in Jambi 

Province, Sumatra, Indonesia, covering an area 

of approximately 2,500 km² between 101.1°E–

101.8°E longitude and 1.8°S–2.5°S latitude 

(Figure 1). The study area represents a 

heterogeneous tropical landscape where natural 

and anthropogenic systems strongly interact. 

This region is a critical tropical land-use 

transition zone in which primary and secondary 

forest ecosystems interface with intensively 

managed agricultural systems, including large-

scale estate crop plantations, smallholder 

farming areas, and expanding settlement 

networks. The area experiences a mean annual 

temperature of 26.8°C, with relatively stable 

thermal conditions throughout the year. Annual 

precipitation ranges from 2,400 to 3,200 mm 

under a monsoonal climate regime. 

Topographic conditions vary from lowland 

alluvial plains adjacent to major river systems 

to steep mountainous terrain towards the 

boundary of Kerinci Seblat National Park, 

supporting diverse vegetation patterns and 

land-use configurations suitable for tropical 

land-cover classification research. 

Research Framework.  

The overall research workflow integrated 

multi-sensor data acquisition, reference data 

development, feature engineering, machine-

learning classification, and object-based spatial 

enhancement to generate operational land-

cover products for tropical regions (Figure 2). 

The combination of optical and radar remote 
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sensing data was designed to enhance 

vegetation discrimination capability and 

improve class separability across complex 

tropical landscapes.

 

Figure 1. Study Area 

 

                

Figure 2. Research Methodology Flowchart

Data Acquisition.  

Landsat 9 Operational Land Imager 

(OLI) surface reflectance imagery was 

obtained through the Google Earth Engine 

platform (Gorelick et al., 2017). Cloud-free 

composite images were generated for the 

period of May to September 2023 using a 

median pixel compositing approach and 

quality assessment bands to mask clouds, 

shadows, and atmospheric noise. Surface 

reflectance values were corrected using the 

Landsat Surface Reflectance Code (LaSRC) 

algorithm (Vermote et al., 2016), converting 

top-of-atmosphere radiance to surface 

reflectance and scaling values to a 0–1 

reflectance range. Complementary L-band 

Synthetic Aperture Radar (SAR) data from 

ALOS-2 PALSAR-2 were processed using 

standard radiometric calibration to convert 

digital numbers into sigma-naught (σ°) 

backscatter values (dB), followed by 

geometric correction to ensure spatial 

consistency across the imagery (Delsouc et 

al., 2020); (Toyota et al., 2021). The 

calibrated radar imagery was geocoded and 

resampled to 30 m spatial resolution using 

bilinear interpolation to preserve radiometric 

reliability and support pixel-level fusion with 

Landsat data.  

Sampling and Reference Data 

Development.  

A structured sampling and labelling 

protocol was implemented to produce reliable 

reference data for model training and 

accuracy assessment. A total of 18,238 

reference samples were compiled, 

comprising 14,029 training samples and 

4,209 independent test samples. Land-cover 

labels were assigned through visual 

interpretation of high-resolution Google 
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Earth and Sentinel-2 imagery. A dual-

interpreter approach was employed, where 

two trained interpreters independently 

labeled the sample points. Afterward, 

discrepancies were reconciled through a 

consensus procedure to enhance labeling 

consistency and reduce interpreter bias. The 

sampling design ensured representation 

across all land-cover classes and the 

landscape variability present in the study 

area. A minimum spatial separation was 

maintained between sampling points to 

reduce spatial clustering and limit the effects 

of spatial autocorrelation. To minimise 

spatial autocorrelation and avoid 

overestimation of accuracy, training and 

independent test samples were spatially 

separated to ensure non-overlapping 

sampling zones. A sampling distribution map 

was generated to document the spatial 

coverage of reference points. 

Feature Engineering.  

A total of 29 predictor variables were 

generated to characterize spectral, vegetation, 

water-related, and structural properties of the 

land surface. Optical-based variables 

included vegetation indices such as NDVI, 

EVI, SAVI, and NDWI, alongside 

agriculture-specific vegetation metrics 

related to crop vigor and canopy condition. 

SAR-derived features included VH and VV 

backscatter, their combinations, and textural 

metrics. The feature set was designed to 

enhance the discrimination of diverse tropical 

agricultural systems with distinct canopy 

structures and varying management 

intensities. 

Machine Learning Classification.  

The classification framework employed 

the Random Forest ensemble learning 

algorithm, which constructs multiple decision 

trees via bootstrap aggregation (bagging) and 

random feature selection (Kusmanto et al., 

2023); (Watrianthos et al., 2023). Final class 

allocation was determined using majority 

voting across all trees (Sekulić et al., 2020; 

Bahri et al., 2023). The model configuration 

included 300 decision trees (n_estimators), as 

convergence assessment indicated stable out-

of-bag (OOB) error rates beyond this 

threshold. The maximum tree depth was set 

to 18 to mitigate overfitting while preserving 

the model's discriminatory capability for the 

22-class taxonomy. The number of features 

considered at each node was set to the square 

root of the total feature count (max_features 

= √29 ≈ 5), following established 

recommendations for remote-sensing 

classification (Aldania et al., 2023). OOB 

error monitoring was used to evaluate model 

stability and generalization. Accuracy 

evaluation was conducted using an 

independent test set rather than internal cross-

validation to provide a more realistic 

performance estimation and reduce optimism 

bias commonly associated with spatially 

autocorrelated training data. 

Handling Class Imbalance.  

To address imbalanced class 

representation, a class-weighting approach 

was applied, assigning higher weights to 

minority classes and lower weights to 

majority classes. A comparison was 

conducted between weighted and non-

weighted Random Forest models to assess the 

influence of class weighting on overall 

classification performance. Synthetic 

oversampling or down-sampling techniques 

were not applied to avoid generating 

artefactual spatial patterns in remote-sensing 

imagery. 

Object-Based Spatial Enhancement.  

To improve spatial coherence and reduce 

salt-and-pepper noise commonly associated 

with pixel-based classifications, Simple 

Linear Iterative Clustering (SLIC) superpixel 

segmentation was applied as a post-

classification refinement step. Class labels 

were reassigned based on the dominant class 

within each superpixel to enforce spatial 

contiguity, resulting in improved spatial 

consistency and cartographic readability of 

the final land-cover map. 

RESULTS AND DISCUSSION  

Feature Importance and Discrimination 

Analysis.  
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Agro Bali : Agricultural Journal                                                                                     e-ISSN 2655-853X 

Vol. 8 No. 3: 1023-1036, November 2025                                     https://doi.org/10.37637/ab.v8i3.2530 

 

1027 

 

 

Variable importance analysis across 

29 predictor features revealed hierarchical 

contributions to classification performance 

(Figure 3a). HH backscatter demonstrated the 

highest overall importance (0.130), 

consistent with previous findings that dual-

polarimetric SAR features provide superior 

crop discrimination capabilities 

(Bhogapurapu et al., 2021). The prominence 

of HH polarization aligns with recent studies 

showing its sensitivity to canopy structure 

and biomass characteristics in tropical 

plantation systems (D. Wang et al., 2021). 

Agricultural-specific indices—tree crop 

index (0.077), vegetation_uniformity (0.061), 

and management_intensity (0.047) 

collectively contributed 67.9% to binary 

estate-smallholder discrimination. This 

substantial contribution validates the 

agricultural focused feature engineering 

approach and corroborates findings by 

Descals et al. (2021) who demonstrated that 

spatial pattern metrics and vegetation 

uniformity indices achieved >88% user 

accuracy in discriminating industrial versus 

smallholder oil palm plantations in Southeast 

Asia. The vegetation uniformity metric 

specifically captures the structural 

differences between estate monocultures and 

smallholder polycultures, as documented in 

large-scale plantation mapping studies across 

Indonesia and Malaysia (Xu et al., 2020). 

 

Figure 3a. Variable Importance Plot 

 

 Partial dependence analysis identified 

optimal thresholds for separating agricultural 

systems (Figure 3b). Vegetation uniformity 

values >0.71 characterized estate 

monocultures (0.707±0.052) versus 

smallholder polycultures (0.621±0.062), with 
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an optimal threshold at 0.66. These 

quantitative thresholds are consistent with 

GLCM texture analysis results reported by 

Zhang et al. (2020), who found that estate 

plantations exhibit significantly higher 

spatial homogeneity compared to 

heterogeneous smallholder systems. 

Similarly, management_intensity (threshold: 

0.69), HH_HV_ratio (0.68), and 

crop_diversity_index (0.60) provided 

quantitative criteria for operational 

discrimination. The crop diversity threshold 

aligns with field-based measurements 

showing smallholder systems typically 

maintain Shannon Diversity Index values 

>0.5, while industrial estates remain <0.2 

(Makate et al., 2019). These thresholds 

exhibited consistent separation across 

validation datasets, suggesting robust 

applicability for tropical agricultural 

monitoring, particularly in complex 

Southeast Asian landscapes (Eisfelder et al., 

2024).

 
 

 

Figure 3b. Partial Dependence Plots

Classification Accuracy and Operational 

Readiness.  

The Random Forest classifier achieved 

53.7% overall accuracy with substantial 

inter-class variation (Table 1). Estate crops 

exhibited operational-quality classification 

(F1=0.94, precision=1.00, recall=0.88), 

while primary dryland forests approached 

viability (F1=0.70, precision=0.58, 

recall=0.89). These results align with 

previous Random Forest applications in 

tropical agricultural systems, where estate 

crops consistently achieve F1-scores >0.85 

due to their spectral and structural 

homogeneity (Tikuye et al., 2023). 

Conversely, most smallholder 

agricultural categories, including pure dry 

agriculture, mixed dry agriculture, and 

paddy fields, uniformly failed operational 

thresholds (F1≈0.00), reflecting the 

fundamental challenge of resolving 

heterogeneous agricultural mosaics at 30m 

resolution (Khan et al., 2024). Mixed-pixel 

effects further complicate classification, as 

25–40% of fields <2 ha contain no pure 

pixels at 30m resolution (Rufin et al., 

2019). Studies using finer-resolution 

Sentinel-2 imagery (10m) report 
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improvements in accuracy of 5–15% over 

30m data for smallholder systems, 

highlighting spatial resolution as a primary 

limiting factor (Jin et al., 2019).

Table 1. Classification Accuracy Metrics by Land Cover Class 

Class ID Land Cover Type Precision Recall F1-Score Support 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Overall 

Primary dryland forest 

Secondary dryland forest 

Primary mangrove forest 

Primary swamp forest 

Plantation forest 

Dry shrub 

Estate crop 

Settlement 

Bare ground 

Savanna and grasses 

Open water 

Secondary mangrove forest 

Secondary swamp forest 

Wet shrub 

Pure dry agriculture 

Mixed dry agriculture 

Paddy field 

Fish pond/aquaculture 

Port or harbour 

Transmigration areas 

Mining 

Swamp 

All Classes 

0.58 

0.52 

0.75 

0.68 

1.00 

0.89 

1.00 

0.85 

0.67 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.54 

0.89 

0.76 

0.45 

0.42 

0.01 

0.08 

0.88 

0.15 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.54 

0.70 

0.62 

0.56 

0.52 

0.01 

0.14 

0.94 

0.26 

0.06 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.54 

1,247 

856 

89 

124 

300 

300 

300 

167 

89 

45 

300 

78 

56 

300 

300 

300 

300 

89 

12 

23 

9 

300 

4,209 

 

Spatial Error Analysis.  

Spatial autocorrelation analysis revealed 

significant error clustering (Moran's I=0.462, 

p<0.001), indicating systematic rather than 

random misclassification patterns (Figure 4). 

This spatial dependency suggests that 

classification errors are not independent but 

exhibit strong geographic structure, 

consistent with findings by (Karasiak et al., 

2022) who demonstrated that ignoring spatial 

autocorrelation leads to optimistic accuracy 

estimates. The Moran's I value of 0.462 falls 

within the range (0.45-0.65) typically 

observed for agricultural classification errors 

in heterogeneous tropical landscapes (M. Li 

& Stein, 2020), indicating moderate to strong 

spatial clustering. Error distribution analysis 

identified four primary categories: 

transitional zones (42%), riparian corridors 

(30%), small field complexes (18%), and 

cloud shadow artifacts (11%). The 

predominance of errors in transitional zones 

and riparian corridors reflects the spectral 

ambiguity in ecotone areas, where gradual 

vegetation shifts challenge discrete 

classification schemes (Buchadas et al., 

2022). Geographic stratification showed 

concentrated errors in three regions: the 

northwestern sector (52-56% error rate) 

characterized by complex smallholder 

mosaics, the central valley (40-44%) affected 

by seasonal flooding dynamics, and forest 

frontier zones (53-55%) experiencing rapid 

land-use change. These forest-agricultural 

frontier zones represent particularly 

challenging environments for classification, 

as documented in recent deforestation 

monitoring studies across Southeast Asia 

(Teo et al., 2025), where heterogeneous 

agricultural encroachment creates complex 

spectral mixing patterns. 

Implications for Agricultural System 

Monitoring.  

https://doi.org/10.37637/ab.v8i3.2530


Agro Bali : Agricultural Journal                                                                                     e-ISSN 2655-853X 

Vol. 8 No. 3: 1023-1036, November 2025                                     https://doi.org/10.37637/ab.v8i3.2530 

 

1030 

 

 

The exceptional performance of 

agricultural-specific indices (67.9% 

contribution) demonstrates that targeted 

feature engineering can substantially 

enhance discrimination capability beyond 

conventional spectral approaches. The 

identified thresholds align with documented 

structural differences between estate and 

smallholder systems: industrial 

monocultures exhibit high spatial uniformity 

(vegetation_uniformity>0.66) and 

management intensity (>0.69), while 

smallholder polycultures display greater 

heterogeneity and diversity. These findings 

corroborate recent comparative analyses 

showing estate plantations maintain NDVI 

coefficient of variation <15% compared to 

>25% for smallholder systems (Defourny et 

al., 2019). The quantitative criteria enable 

objective, reproducible classification 

beyond traditional spectral approaches, 

addressing a critical gap in operational 

tropical agricultural monitoring. Recent 

high-resolution mapping efforts have 

demonstrated that road network density 

(industrial >0.5 km/ha vs. smallholder <0.1 

km/ha) and field size metrics (estate median 

>50 ha vs. smallholder median 0.16-0.32 ha) 

provide robust discriminators across diverse 

Southeast Asian landscapes (Rufin et al., 

2025). These structural metrics, when 

combined with SAR backscatter and optical 

indices, achieve classification accuracies 

exceeding single-source approaches by 8-

15% (Poortinga et al., 2019).

 

 

Figure 4. Spatial Error Map 

 

Methodological Limitations and Solutions.  

The failure to adequately classify 

smallholder agriculture reflects inherent 

limitations of single-date, medium-resolution 

imagery. Mixed-pixel effects at field 

boundaries, where multiple crop types 

occupy individual 30m pixels, create 

ambiguous spectral signatures that 

fundamentally limit discrimination capability 

(Belgiu & Csillik, 2018). Quantitative 

assessments indicate that 92-97% of 

smallholder fields have <50 pure pixels at 

30m resolution, with 25-40% containing no 

pure pixels at all (Rufin et al., 2025). Multi-

temporal approaches exploiting phenological 

variations offer immediate improvement: oil 

palm maintains consistent greenness 

(NDVI>0.7) year-round, while rubber 

exhibits seasonal defoliation (NDVI 

variation>0.3) during January-March periods 

(Xu et al., 2020). Recent phenology-based 

mapping studies in tropical regions have 
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achieved 81-84% F1-scores for rubber 

plantations by leveraging these distinctive 

defoliation-refoliation cycles (Sari et al., 

2022). The integration of phenological 

metrics derived from dense time-series can 

improve classification accuracy by 5-13% 

over single-date approaches (Danylo et al., 

2021) . Sentinel-2 integration (10m 

resolution, 5-day revisit) would reduce 

mixed-pixel effects while enabling 

phenological characterization. Recent 

applications demonstrate that 10m Sentinel-2 

data enables detection of plantations and 

fields as small as 2-3 ha, compared to the 5-

10 ha minimum for reliable 30m Landsat 

classification (Zhou et al., 2021). The SEA-

Rice-Ci10 project successfully mapped 28.5 

million hectares of smallholder rice systems 

across Southeast Asia using 10m Sentinel-1/2 

fusion, demonstrating operational scalability 

(Ginting et al., 2024). Furthermore, 10m 

resolution reduces mixed-pixel proportions 

by 60-70% compared to 30m data in 

heterogeneous smallholder landscapes (Zhai 

et al., 2024). 

Operational Deployment Strategy.  

Based on performance metrics and 

operational thresholds, we propose selective 

deployment: estate crop monitoring and 

broad forest stratification are immediately 

operational, while smallholder mapping 

requires methodological advancement. This 

graduated approach aligns with operational 

agricultural monitoring frameworks that 

prioritize high-confidence classes while 

acknowledging uncertainty in complex 

systems (Potapov et al., 2022). The SLIC 

enhancement, achieving 99.5% noise 

reduction, transforms pixel-based outputs 

into interpretable products suitable for 

landscape planning. Recent advances in 

superpixel segmentation demonstrate 4-8% 

accuracy improvements through boundary 

purification and homogeneity enhancement 

(Yang et al., 2025). The SLIC approach 

effectively addresses salt-and-pepper noise 

while preserving meaningful field 

boundaries, a critical requirement for 

operational agricultural mapping (Estefania-

Salazar & Iglesias, 2024) 

However, sub-hectare mapping demands 

either very-high-resolution imagery (Planet: 

3m daily) or deep learning approaches (U-

Net, Vision Transformers) that preserve 

spatial context while learning complex 

agricultural patterns. Planet imagery at 3m 

resolution has demonstrated 86-88% single-

sensor accuracy for mapping smallholder 

fields <0.3 ha, with daily revisit enabling 

robust cloud-gap filling in tropical regions 

(Rufin et al., 2022). The integration of Planet 

with Sentinel data achieves combined 

accuracies approaching 88-91% for 

heterogeneous smallholder systems (Sagan et 

al., 2021). Deep learning architectures, 

particularly U-Net and Vision Transformers, 

have emerged as superior alternatives to 

traditional machine learning for complex 

agricultural mapping.  

Recent U-Net applications achieve F1-

scores of 84-99% and mean IoU >0.85 for 

multi-crop classification in heterogeneous 

tropical landscapes (K. Li et al., 2022). 

Vision Transformer approaches, specifically 

designed for agricultural time-series, 

demonstrate 3-8% accuracy advantages over 

CNN-based methods through superior 

temporal feature extraction and multi-modal 

fusion capabilities (R. Wang et al., 2024). 

The Cropformer and MeViT architectures 

have proven particularly effective for 

medium-resolution (30m) tropical crop 

mapping, achieving >90% overall accuracy 

across diverse scenarios (Panboonyuen et al., 

2023). Self-supervised pre-training strategies 

further enhance performance, enabling 85-

90% accuracy one month earlier in the 

growing season compared to conventional 

supervised approaches (Xu et al., 2024). 

CONCLUSION 

This study successfully developed a 

methodology for land cover classification 

with a focus on agriculture through the 

innovative integration of multi-sensor remote 

sensing data and object-based spatial 

enhancement. The comprehensive evaluation 
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across 22 land cover categories in Jambi 

Province highlights both the potential and 

limitations of current remote sensing 

approaches for the fine-scale discrimination 

of agricultural systems in complex tropical 

environments. The Random Forest classifier, 

specifically designed for agricultural 

applications, achieved an overall accuracy of 

53.7%. It exhibited particularly robust 

performance in classifying estate crop 

systems, achieving an F1-score of 94%, as 

well as in forest categories. Nonetheless, the 

classifier's inability to accurately classify 

smallholder agricultural systems highlights 

significant challenges in distinguishing 

complex farming mosaics when utilizing 

single-date imagery. The strategic weighting 

of agricultural classes effectively enhanced 

the model's sensitivity to economically 

significant land use categories. Furthermore, 

the integration of PALSAR-2 L-band radar 

data with Landsat 9 optical imagery provided 

valuable complementary information on 

structural and spectral characteristics. 

The implementation of SLIC object-

based enhancement constitutes a noteworthy 

methodological advancement, achieving a 

99.5% reduction in salt-and-pepper noise and 

significant improvements in spatial 

coherence metrics. This post-processing 

technique effectively transforms pixel-based 

classifications, traditionally used in academic 

contexts, into operationally viable products 

suitable for land use planning and policy 

applications, thereby addressing a persistent 

limitation in tropical land cover mapping. 

Nonetheless, the challenges in discriminating 

smallholder systems suggest that alternative 

approaches, such as field surveys and ultra-

high-resolution imagery, remain essential for 

a comprehensive analysis of agricultural 

landscapes. 
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