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Abstract. The transformation of tropical landscapes due to agricultural expansion constitutes a significant global
environmental challenge. Current land-cover classification methods, however, provide limited differentiation
among agricultural management systems. This study develops an agriculture-focused land-cover classification
workflow that fuses Landsat 9 optical imagery and PALSAR-2 L-band SAR across a =2,500 km? study area in
Jambi Province, Sumatra, Indonesia, to enhance discrimination of crop systems and improve spatial coherence via
object-based enhancement. A 22-class land-cover taxonomy was supported by 14,029 strategically collected
training points. Feature engineering produced 29 predictor variables, including conventional vegetation indices,
agricultural-specific metrics, water indicators, and SAR-derived structural features. Models were evaluated on an
independent test dataset comprising 4,209 samples. An agriculture-weighted Random Forest classifier with
strategic class weighting was implemented and followed by Simple Linear Iterative Clustering (SLIC) object-
based enhancement to suppress speckle and enforce spatial contiguity. The classification achieved an overall
accuracy of 53.7%, with exceptional performance for estate crop systems (F1 = 94%) and reliable forest
discrimination. SLIC reduced salt-and-pepper noise by 99.5% and substantially improved spatial coherence
metrics, transforming fragmented pixel-based outputs into operationally viable products. Despite these gains,
discriminating smallholder mosaics remains challenging and likely requires additional temporal or higher-
resolution inputs.

Keywords: agricultural system; land cover classification; multi-sensor remote sensing; object-based image
analysis; random forest

INTRODUCTION

Tropical landscape  transformation
represents one of the most urgent and
structurally complex environmental

system heterogeneity (Julianto et al., 2023).
Robust, spatially explicit, and temporally

consistent  land-cover information has

therefore become indispensable for evidence-

challenges of the twenty-first century, with

profound implications for  ecosystem
functioning, climate  regulation, and
sustainable development trajectories.

Southeast Asian tropical forest biomes,
globally acknowledged for their exceptional
biological diversity and regulatory ecosystem
services, continue to experience rapid
degradation  predominantly driven by
agricultural expansion, market-oriented land
commodification, and intensifying
anthropogenic disturbances. In Indonesia, for
instance, intercropping practices, such as
those involving shallots and chili, have been
shown to increase land-use efficiency and

based environmental governance, sustainable
land-use planning, and compliance with
international climate accountability
frameworks, including the Reducing
Emissions from Deforestation and Forest
Degradation (REDD+) initiative. However,
the inherent biophysical and structural
complexity of tropical landscapes continues
to impede reliable monitoring. Dense multi-
layered  canopies, fine-scale  spatial
heterogeneity, and sensor-specific limitations
collectively constrain the performance and
generalizability of conventional remote
sensing techniques, resulting in persistent
accuracy gaps and classification ambiguities
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(David et al., 2022; Goebel et al., 2023;
Lemettais et al., 2025; Chan & Reba, 2025).
This challenge is further compounded by
underlying soil physical variations, such as
differences in texture and organic matter
content across land uses that affect surface

reflectance and backscatter responses
(Solekhah et al., 2024).
Within  this  context, agricultural

expansion remains the primary driver of
tropical deforestation globally, underscoring
the need to differentiate agricultural land

systems with greater precision.
Distinguishing among agricultural
management regimes is no longer a

descriptive exercise, but a scientific and
policy-critical ~ priority due to their
differentiated ecological footprints, carbon
outcomes, socio-economic implications, and
governance challenges. Notwithstanding
recent advances, prevailing land-cover
classification models continue to struggle to
accurately discriminate industrial
monoculture  estates from fragmented
smallholder mosaics, particularly within
heterogeneous  tropical  agro-ecological
matrices, ultimately constraining operational
decision-making and targeted intervention
design (Sekuli¢ et al., 2020); (Bahri et al.,
2023).

This  research  addresses  these
methodological and operational gaps by
developing an agricultural-centric land-cover
classification framework that integrates
multi-sensor remote sensing, domain-specific
feature engineering, and object-based spatial
enhancement. Specifically, it evaluates (i) the
effectiveness of  multi-sensor  feature
engineering in differentiating agricultural
production systems, and (ii) the value-added
contribution of agricultural-specific
weighting  strategies  within ~ machine
learning—based classification to enhance
class separability of crop management
systems. By situating the empirical
investigation in Jambi Province, Sumatra, an
ecologically sensitive yet economically
contested region, this study offers both
methodological and policy relevance.
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Uniquely, this study contributes original
methodological advancement by establishing
an integrated multi-sensor, agriculture-
weighted, and object-based classification
framework capable of quantitatively
differentiating estate and smallholder
agricultural systems within complex tropical
landscapes. The resulting framework is
expected to enhance the precision,
interpretability, and applicability of tropical
land-cover products for sustainable land
governance, environmental monitoring, and
the implementation of climate policy.

METHODS

Study Area.

The research was conducted in Jambi
Province, Sumatra, Indonesia, covering an area
of approximately 2,500 km? between 101.1°E-
101.8°E longitude and 1.8°S-2.5°S latitude
(Figure 1). The study area represents a
heterogeneous tropical landscape where natural
and anthropogenic systems strongly interact.
This region is a critical tropical land-use
transition zone in which primary and secondary
forest ecosystems interface with intensively
managed agricultural systems, including large-
scale estate crop plantations, smallholder
farming areas, and expanding settlement
networks. The area experiences a mean annual
temperature of 26.8°C, with relatively stable
thermal conditions throughout the year. Annual
precipitation ranges from 2,400 to 3,200 mm
under a monsoonal climate regime.
Topographic conditions vary from lowland
alluvial plains adjacent to major river systems
to steep mountainous terrain towards the
boundary of Kerinci Seblat National Park,
supporting diverse vegetation patterns and
land-use configurations suitable for tropical
land-cover classification research.

Research Framework.

The overall research workflow integrated
multi-sensor data acquisition, reference data
development, feature engineering, machine-
learning classification, and object-based spatial
enhancement to generate operational land-
cover products for tropical regions (Figure 2).
The combination of optical and radar remote
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sensing data was designed to enhance
capability and

vegetation discrimination
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improve class separability across complex
tropical landscapes.

Figure 1. Study Area
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Figure 2. Research Methodology Flowchart

Data Acquisition.

Landsat 9 Operational Land Imager
(OLI) surface reflectance imagery was
obtained through the Google Earth Engine
platform (Gorelick et al., 2017). Cloud-free
composite images were generated for the
period of May to September 2023 using a
median pixel compositing approach and
quality assessment bands to mask clouds,
shadows, and atmospheric noise. Surface
reflectance values were corrected using the
Landsat Surface Reflectance Code (LaSRC)
algorithm (VVermote et al., 2016), converting
top-of-atmosphere  radiance to surface
reflectance and scaling values to a 0-1
reflectance range. Complementary L-band
Synthetic Aperture Radar (SAR) data from
ALOS-2 PALSAR-2 were processed using
standard radiometric calibration to convert
digital numbers into sigma-naught (c°)

backscatter values (dB), followed by
geometric correction to ensure spatial
consistency across the imagery (Delsouc et
al., 2020); (Toyota et al., 2021). The
calibrated radar imagery was geocoded and
resampled to 30 m spatial resolution using
bilinear interpolation to preserve radiometric
reliability and support pixel-level fusion with
Landsat data.
Sampling and
Development.

A structured sampling and labelling
protocol was implemented to produce reliable
reference data for model training and
accuracy assessment. A total of 18,238
reference  samples  were  compiled,
comprising 14,029 training samples and
4,209 independent test samples. Land-cover
labels were assigned through visual
interpretation of high-resolution Google

Reference Data
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Earth and Sentinel-2 imagery. A dual-
interpreter approach was employed, where
two trained interpreters independently
labeled the sample points. Afterward,
discrepancies were reconciled through a
consensus procedure to enhance labeling
consistency and reduce interpreter bias. The
sampling design ensured representation
across all land-cover classes and the
landscape variability present in the study
area. A minimum spatial separation was
maintained between sampling points to
reduce spatial clustering and limit the effects
of spatial autocorrelation. To minimise
spatial autocorrelation and avoid
overestimation of accuracy, training and
independent test samples were spatially
separated to ensure  non-overlapping
sampling zones. A sampling distribution map
was generated to document the spatial
coverage of reference points.

Feature Engineering.

A total of 29 predictor variables were
generated to characterize spectral, vegetation,
water-related, and structural properties of the
land surface. Optical-based variables
included vegetation indices such as NDVI,
EVI, SAVI, and NDWI, alongside
agriculture-specific ~ vegetation  metrics
related to crop vigor and canopy condition.
SAR-derived features included VH and VV
backscatter, their combinations, and textural
metrics. The feature set was designed to
enhance the discrimination of diverse tropical
agricultural systems with distinct canopy
structures and varying  management
intensities.

Machine Learning Classification.

The classification framework employed
the Random Forest ensemble learning
algorithm, which constructs multiple decision
trees via bootstrap aggregation (bagging) and
random feature selection (Kusmanto et al.,
2023); (Watrianthos et al., 2023). Final class
allocation was determined using majority
voting across all trees (Sekuli¢ et al., 2020;
Bahri et al., 2023). The model configuration
included 300 decision trees (n_estimators), as
convergence assessment indicated stable out-
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of-bag (OOB) error rates beyond this
threshold. The maximum tree depth was set
to 18 to mitigate overfitting while preserving
the model's discriminatory capability for the
22-class taxonomy. The number of features
considered at each node was set to the square
root of the total feature count (max_features
= 29 = 5), following established
recommendations  for remote-sensing
classification (Aldania et al., 2023). OOB
error monitoring was used to evaluate model
stability and generalization. Accuracy
evaluation was conducted wusing an
independent test set rather than internal cross-
validation to provide a more realistic
performance estimation and reduce optimism
bias commonly associated with spatially
autocorrelated training data.

Handling Class Imbalance.

To address imbalanced class
representation, a class-weighting approach
was applied, assigning higher weights to
minority classes and lower weights to
majority classes. A comparison was
conducted between weighted and non-
weighted Random Forest models to assess the
influence of class weighting on overall
classification performance. Synthetic
oversampling or down-sampling techniques
were not applied to avoid generating
artefactual spatial patterns in remote-sensing
imagery.

Object-Based Spatial Enhancement.

To improve spatial coherence and reduce
salt-and-pepper noise commonly associated
with pixel-based classifications, Simple
Linear Iterative Clustering (SLIC) superpixel
segmentation was applied as a post-
classification refinement step. Class labels
were reassigned based on the dominant class
within each superpixel to enforce spatial
contiguity, resulting in improved spatial
consistency and cartographic readability of
the final land-cover map.

RESULTS AND DISCUSSION

Feature Importance and Discrimination
Analysis.
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Variable importance analysis across
29 predictor features revealed hierarchical
contributions to classification performance
(Figure 3a). HH backscatter demonstrated the
highest  overall  importance  (0.130),
consistent with previous findings that dual-
polarimetric SAR features provide superior
crop discrimination capabilities
(Bhogapurapu et al., 2021). The prominence
of HH polarization aligns with recent studies
showing its sensitivity to canopy structure
and biomass characteristics in tropical
plantation systems (D. Wang et al., 2021).
Agricultural-specific  indices—tree  crop
index (0.077), vegetation_uniformity (0.061),
and management_intensity (0.047)
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collectively contributed 67.9% to binary

estate-smallholder  discrimination.  This
substantial  contribution  validates the
agricultural focused feature engineering

approach and corroborates findings by
Descals et al. (2021) who demonstrated that
spatial pattern metrics and vegetation
uniformity indices achieved >88% user
accuracy in discriminating industrial versus
smallholder oil palm plantations in Southeast
Asia. The vegetation uniformity metric
specifically ~ captures  the  structural
differences between estate monocultures and
smallholder polycultures, as documented in
large-scale plantation mapping studies across
Indonesia and Malaysia (Xu et al., 2020).
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Figure 3a. Variable Importance Plot

Partial dependence analysis identified
optimal thresholds for separating agricultural
systems (Figure 3b). Vegetation uniformity

values >0.71 characterized estate
monocultures (0.707+0.052) Versus
smallholder polycultures (0.621+0.062), with
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an optimal threshold at 0.66. These
quantitative thresholds are consistent with
GLCM texture analysis results reported by
Zhang et al. (2020), who found that estate

plantations exhibit significantly higher
spatial homogeneity ~ compared to
heterogeneous smallholder systems.
Similarly, management_intensity (threshold:
0.69), HH_HV ratio (0.68), and
crop_diversity_index (0.60) provided
quantitative  criteria  for  operational

discrimination. The crop diversity threshold
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aligns with field-based measurements
showing smallholder systems typically
maintain Shannon Diversity Index values
>0.5, while industrial estates remain <0.2
(Makate et al., 2019). These thresholds
exhibited consistent separation across
validation datasets, suggesting robust
applicability  for  tropical agricultural
monitoring,  particularly in  complex
Southeast Asian landscapes (Eisfelder et al.,
2024).

Partial Dependence Plots for Estate-Smallholder Discrimination
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Figure 3b. Partial Dependence Plots

Classification Accuracy and Operational
Readiness.

The Random Forest classifier achieved
53.7% overall accuracy with substantial
inter-class variation (Table 1). Estate crops
exhibited operational-quality classification
(F1=0.94, precision=1.00, recall=0.88),
while primary dryland forests approached
viability (F1=0.70, precision=0.58,
recall=0.89). These results align with
previous Random Forest applications in
tropical agricultural systems, where estate
crops consistently achieve F1-scores >0.85
due to their spectral and structural

homogeneity (Tikuye et al., 2023).
Conversely, most smallholder
agricultural categories, including pure dry
agriculture, mixed dry agriculture, and
paddy fields, uniformly failed operational
thresholds  (F1~0.00), reflecting the
fundamental challenge of resolving
heterogeneous agricultural mosaics at 30m
resolution (Khan et al., 2024). Mixed-pixel
effects further complicate classification, as
25-40% of fields <2 ha contain no pure
pixels at 30m resolution (Rufin et al.,
2019). Studies wusing finer-resolution
Sentinel-2 imagery  (10m) report
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improvements in accuracy of 5-15% over
30m data for smallholder systems,
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highlighting spatial resolution as a primary
limiting factor (Jin et al., 2019).

Table 1. Classification Accuracy Metrics by Land Cover Class

Class ID Land Cover Type Precision Recall F1-Score Support
1 Primary dryland forest 0.58 0.89 0.70 1,247
2 Secondary dryland forest 0.52 0.76 0.62 856
3 Primary mangrove forest 0.75 0.45 0.56 89
4 Primary swamp forest 0.68 0.42 0.52 124
5 Plantation forest 1.00 0.01 0.01 300
6 Dry shrub 0.89 0.08 0.14 300
7 Estate crop 1.00 0.88 0.94 300
8 Settlement 0.85 0.15 0.26 167
9 Bare ground 0.67 0.03 0.06 89
10 Savanna and grasses 0.00 0.00 0.00 45
11 Open water 0.00 0.00 0.00 300
12 Secondary mangrove forest 0.00 0.00 0.00 78
13 Secondary swamp forest 0.00 0.00 0.00 56
14 Wet shrub 0.01 0.00 0.00 300
15 Pure dry agriculture 0.00 0.00 0.00 300
16 Mixed dry agriculture 0.00 0.00 0.00 300
17 Paddy field 0.00 0.00 0.00 300
18 Fish pond/aquaculture 0.00 0.00 0.00 89
19 Port or harbour 0.00 0.00 0.00 12
20 Transmigration areas 0.00 0.00 0.00 23
21 Mining 0.01 0.00 0.00 9
22 Swamp 0.00 0.00 0.00 300

Overall  All Classes 0.54 0.54 0.54 4,209

Spatial Error Analysis.

Spatial autocorrelation analysis revealed
significant error clustering (Moran's 1=0.462,
p<0.001), indicating systematic rather than
random misclassification patterns (Figure 4).
This spatial dependency suggests that
classification errors are not independent but
exhibit  strong  geographic  structure,
consistent with findings by (Karasiak et al.,
2022) who demonstrated that ignoring spatial
autocorrelation leads to optimistic accuracy
estimates. The Moran's | value of 0.462 falls
within the range (0.45-0.65) typically
observed for agricultural classification errors
in heterogeneous tropical landscapes (M. Li
& Stein, 2020), indicating moderate to strong
spatial clustering. Error distribution analysis
identified  four  primary  categories:
transitional zones (42%), riparian corridors
(30%), small field complexes (18%), and
cloud shadow artifacts (11%). The
predominance of errors in transitional zones

and riparian corridors reflects the spectral
ambiguity in ecotone areas, where gradual
vegetation  shifts  challenge  discrete
classification schemes (Buchadas et al.,
2022). Geographic stratification showed
concentrated errors in three regions: the
northwestern sector (52-56% error rate)
characterized Dby complex smallholder
mosaics, the central valley (40-44%) affected
by seasonal flooding dynamics, and forest
frontier zones (53-55%) experiencing rapid
land-use change. These forest-agricultural
frontier ~ zones  represent  particularly
challenging environments for classification,
as documented in recent deforestation
monitoring studies across Southeast Asia
(Teo et al.,, 2025), where heterogeneous
agricultural encroachment creates complex
spectral mixing patterns.

Implications for Agricultural
Monitoring.

System
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The exceptional performance of
agricultural-specific indices (67.9%
contribution) demonstrates that targeted
feature engineering can substantially
enhance discrimination capability beyond
conventional spectral approaches. The
identified thresholds align with documented
structural differences between estate and
smallholder systems: industrial
monocultures exhibit high spatial uniformity
(vegetation_uniformity>0.66) and
management intensity  (>0.69), while
smallholder polycultures display greater
heterogeneity and diversity. These findings
corroborate recent comparative analyses
showing estate plantations maintain NDVI
coefficient of variation <15% compared to
>25% for smallholder systems (Defourny et
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al., 2019). The quantitative criteria enable
objective, reproducible  classification
beyond traditional spectral approaches,
addressing a critical gap in operational
tropical agricultural monitoring. Recent
high-resolution mapping efforts have
demonstrated that road network density
(industrial >0.5 km/ha vs. smallholder <0.1
km/ha) and field size metrics (estate median
>50 ha vs. smallholder median 0.16-0.32 ha)
provide robust discriminators across diverse
Southeast Asian landscapes (Rufin et al.,
2025). These structural metrics, when
combined with SAR backscatter and optical
indices, achieve classification accuracies
exceeding single-source approaches by 8-
15% (Poortinga et al., 2019).

Jambi Province Study Area

Prediction Uncertainty Map
(Entropy-based Classification Confidenc:
O TEL T
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Classification Error
m
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“1014 w015
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Figure 4. Spatial Error Map

Methodological Limitations and Solutions.

The failure to adequately classify
smallholder agriculture reflects inherent
limitations of single-date, medium-resolution
imagery. Mixed-pixel effects at field
boundaries, where multiple crop types
occupy individual 30m pixels, create
ambiguous  spectral  signatures  that
fundamentally limit discrimination capability
(Belgiu & Csillik, 2018). Quantitative
assessments indicate that 92-97% of

smallholder fields have <50 pure pixels at
30m resolution, with 25-40% containing no
pure pixels at all (Rufin et al., 2025). Multi-
temporal approaches exploiting phenological
variations offer immediate improvement: oil
palm  maintains  consistent  greenness
(NDVI>0.7) year-round, while rubber
exhibits  seasonal defoliation (NDVI
variation>0.3) during January-March periods
(Xu et al., 2020). Recent phenology-based
mapping studies in tropical regions have
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achieved 81-84% F1-scores for rubber
plantations by leveraging these distinctive
defoliation-refoliation cycles (Sari et al.,
2022). The integration of phenological
metrics derived from dense time-series can
improve classification accuracy by 5-13%
over single-date approaches (Danylo et al.,
2021) Sentinel-2 integration  (10m
resolution, 5-day revisit) would reduce
mixed-pixel  effects  while  enabling
phenological  characterization.  Recent
applications demonstrate that 10m Sentinel-2
data enables detection of plantations and
fields as small as 2-3 ha, compared to the 5-
10 ha minimum for reliable 30m Landsat
classification (Zhou et al., 2021). The SEA-
Rice-Cil0 project successfully mapped 28.5
million hectares of smallholder rice systems
across Southeast Asia using 10m Sentinel-1/2
fusion, demonstrating operational scalability
(Ginting et al., 2024). Furthermore, 10m
resolution reduces mixed-pixel proportions
by 60-70% compared to 30m data in
heterogeneous smallholder landscapes (Zhai
et al., 2024).

Operational Deployment Strategy.

Based on performance metrics and
operational thresholds, we propose selective
deployment: estate crop monitoring and
broad forest stratification are immediately
operational, while smallholder mapping
requires methodological advancement. This
graduated approach aligns with operational
agricultural monitoring frameworks that
prioritize  high-confidence classes while
acknowledging uncertainty in complex
systems (Potapov et al., 2022). The SLIC
enhancement, achieving 99.5% noise
reduction, transforms pixel-based outputs
into interpretable products suitable for
landscape planning. Recent advances in
superpixel segmentation demonstrate 4-8%
accuracy improvements through boundary
purification and homogeneity enhancement
(Yang et al., 2025). The SLIC approach
effectively addresses salt-and-pepper noise
while  preserving  meaningful  field
boundaries, a critical requirement for
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operational agricultural mapping (Estefania-
Salazar & Iglesias, 2024)

However, sub-hectare mapping demands
either very-high-resolution imagery (Planet:
3m daily) or deep learning approaches (U-
Net, Vision Transformers) that preserve
spatial context while learning complex
agricultural patterns. Planet imagery at 3m
resolution has demonstrated 86-88% single-
sensor accuracy for mapping smallholder
fields <0.3 ha, with daily revisit enabling
robust cloud-gap filling in tropical regions
(Rufin et al., 2022). The integration of Planet
with Sentinel data achieves combined
accuracies  approaching  88-91%  for
heterogeneous smallholder systems (Sagan et
al., 2021). Deep learning architectures,
particularly U-Net and Vision Transformers,
have emerged as superior alternatives to
traditional machine learning for complex
agricultural mapping.

Recent U-Net applications achieve F1-
scores of 84-99% and mean loU >0.85 for
multi-crop classification in heterogeneous
tropical landscapes (K. Li et al., 2022).
Vision Transformer approaches, specifically
designed  for agricultural  time-series,
demonstrate 3-8% accuracy advantages over
CNN-based methods through superior
temporal feature extraction and multi-modal
fusion capabilities (R._ Wang et al., 2024).
The Cropformer and MeViT architectures
have proven particularly effective for
medium-resolution  (30m) tropical crop
mapping, achieving >90% overall accuracy
across diverse scenarios (Panboonyuen et al.,
2023). Self-supervised pre-training strategies
further enhance performance, enabling 85-
90% accuracy one month earlier in the
growing season compared to conventional
supervised approaches (Xu et al., 2024).

CONCLUSION

This study successfully developed a
methodology for land cover classification
with a focus on agriculture through the
innovative integration of multi-sensor remote
sensing data and object-based spatial
enhancement. The comprehensive evaluation

1031


https://doi.org/10.37637/ab.v8i3.2530

Agro Bali : Agricultural Journal
Vol. 8 No. 3: 1023-1036, November 2025

across 22 land cover categories in Jambi
Province highlights both the potential and
limitations of current remote sensing
approaches for the fine-scale discrimination
of agricultural systems in complex tropical
environments. The Random Forest classifier,
specifically designed for agricultural
applications, achieved an overall accuracy of
53.7%. It exhibited particularly robust
performance in classifying estate crop
systems, achieving an F1-score of 94%, as
well as in forest categories. Nonetheless, the
classifier's inability to accurately classify
smallholder agricultural systems highlights
significant challenges in distinguishing
complex farming mosaics when utilizing
single-date imagery. The strategic weighting
of agricultural classes effectively enhanced
the model's sensitivity to economically
significant land use categories. Furthermore,
the integration of PALSAR-2 L-band radar
data with Landsat 9 optical imagery provided
valuable complementary information on
structural and spectral characteristics.

The implementation of SLIC object-
based enhancement constitutes a noteworthy
methodological advancement, achieving a
99.5% reduction in salt-and-pepper noise and
significant ~ improvements in  spatial
coherence metrics. This post-processing
technique effectively transforms pixel-based
classifications, traditionally used in academic
contexts, into operationally viable products
suitable for land use planning and policy
applications, thereby addressing a persistent
limitation in tropical land cover mapping.
Nonetheless, the challenges in discriminating
smallholder systems suggest that alternative
approaches, such as field surveys and ultra-
high-resolution imagery, remain essential for
a comprehensive analysis of agricultural
landscapes.
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